The answer is twelve and you can thank me later
Q in (-oo:+oo)
2/3 = (1/3)*q // - (1/3)*q
2/3-((1/3)*q) = 0
ddddddddd
d d
d d
(-1/3)*q+2/3 = 0 d d
d d
2/3-1/3*q = 0 // - 2/3 d d
d d
-1/3*q = -2/3 // : -1/3 d d
d d
q = -2/3/(-1/3) ddddddd dddddddd
dd dd
q = 2 dd dd
dd dddd dd
q = 2 dddddddddd dddddddddddd
Answer:
<h2>7</h2>
Step-by-step explanation:
![\left[\left(11\:-\:4\right)^3\right]^2\:\div \left(4\:+\:3\right)^5\\\\\frac{\left(\left(11-4\right)^3\right)^2}{\left(4+3\right)^5}\\\\\mathrm{Subtract\:the\:numbers:}\:11-4=7\\\\=\frac{\left(7^3\right)^2}{\left(4+3\right)^5}\\\\\mathrm{Add\:the\:numbers:}\:4+3=7\\\\=\frac{\left(7^3\right)^2}{7^5}\\\\\left(7^3\right)^2=7^6\\\\=\frac{7^6}{7^5}\\\\\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}\\\\\frac{7^6}{7^5}=7^{6-5}\\\\\mathrm{Subtract\:the\:numbers:}\:6-5=1\\\\=7](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft%2811%5C%3A-%5C%3A4%5Cright%29%5E3%5Cright%5D%5E2%5C%3A%5Cdiv%20%5Cleft%284%5C%3A%2B%5C%3A3%5Cright%29%5E5%5C%5C%5C%5C%5Cfrac%7B%5Cleft%28%5Cleft%2811-4%5Cright%29%5E3%5Cright%29%5E2%7D%7B%5Cleft%284%2B3%5Cright%29%5E5%7D%5C%5C%5C%5C%5Cmathrm%7BSubtract%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A11-4%3D7%5C%5C%5C%5C%3D%5Cfrac%7B%5Cleft%287%5E3%5Cright%29%5E2%7D%7B%5Cleft%284%2B3%5Cright%29%5E5%7D%5C%5C%5C%5C%5Cmathrm%7BAdd%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A4%2B3%3D7%5C%5C%5C%5C%3D%5Cfrac%7B%5Cleft%287%5E3%5Cright%29%5E2%7D%7B7%5E5%7D%5C%5C%5C%5C%5Cleft%287%5E3%5Cright%29%5E2%3D7%5E6%5C%5C%5C%5C%3D%5Cfrac%7B7%5E6%7D%7B7%5E5%7D%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Aexponent%5C%3Arule%7D%3A%5Cquad%20%5Cfrac%7Bx%5Ea%7D%7Bx%5Eb%7D%3Dx%5E%7Ba-b%7D%5C%5C%5C%5C%5Cfrac%7B7%5E6%7D%7B7%5E5%7D%3D7%5E%7B6-5%7D%5C%5C%5C%5C%5Cmathrm%7BSubtract%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A6-5%3D1%5C%5C%5C%5C%3D7)
A+b is 5+2 which equals 7
c=3 but 7 cannot be divided by 3.
which would be why this cannot be evaluated
Answer:
Yes they did.
Step-by-step explanation:
So you have the fraction 3/4 and 6/8. If you divide the fraction 6/8 by 2 you will get 3/4 since 6/8 is an unsimplifed form of 3/4.