Answer:
25
Step-by-step explanation:
2 + 2+ 2 + 2 = 8
3 + 3 + 3 = 9
4 + 4 = 8
8
8
9
____+
25
It's a little hard to see, but I'm almost positive the y intercept is -1.
Remember, the y intercept is wherever the line intercepts in the y axis 0.
Good luck my man.
Answer:
there is no greatest load
Step-by-step explanation:
Let x and y represent the load capacities of my truck and my neighbor's truck, respectively. We are given two relations:
x ≥ y +600 . . . . . my truck can carry at least 600 pounds more
x ≤ (1/3)(4y) . . . . . my truck carries no more than all 4 of hers
Combining these two inequalities, we have ...
4/3y ≥ x ≥ y +600
1/3y ≥ 600 . . . . . . . subtract y
y ≥ 1800 . . . . . . . . multiply by 3
My truck's capacity is greater than 1800 +600 = 2400 pounds. This is a lower limit. The question asks for an <em>upper limit</em>. The given conditions do not place any upper limit on truck capacity.
the solid is made up of 2 regular octagons, 8 sides, joined up by 8 rectangles, one on each side towards the other octagonal face.
from the figure, we can see that the apothem is 5 for the octagons, and since each side is 3 cm long, the perimeter of one octagon is 3*8 = 24.
the standing up sides are simply rectangles of 8x3.
if we can just get the area of all those ten figures, and sum them up, that'd be the area of the solid.
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=5\\ p=24 \end{cases}\implies A=\cfrac{1}{2}(5)(24)\implies \stackrel{\textit{just for one octagon}}{A=60} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{two octagon's area}}{2(60)}~~+~~\stackrel{\textit{eight rectangle's area}}{8(3\cdot 8)}\implies 120+192\implies 312](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D5%5C%5C%20p%3D24%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%285%29%2824%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bjust%20for%20one%20octagon%7D%7D%7BA%3D60%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwo%20octagon%27s%20area%7D%7D%7B2%2860%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Beight%20rectangle%27s%20area%7D%7D%7B8%283%5Ccdot%208%29%7D%5Cimplies%20120%2B192%5Cimplies%20312)
The 6 is in the ones place the 1 is in the tens place and the 2 is in the hundreds place.