We will use demonstration of recurrences<span>1) for n=1, 10= 5*1(1+1)=5*2=10, it is just
2) assume that the equation </span>10 + 30 + 60 + ... + 10n = 5n(n + 1) is true, <span>for all positive integers n>=1
</span>3) let's show that the equation<span> is also true for n+1, n>=1
</span><span>10 + 30 + 60 + ... + 10(n+1) = 5(n+1)(n + 2)
</span>let be N=n+1, N is integer because of n+1, so we have
<span>10 + 30 + 60 + ... + 10N = 5N(N+1), it is true according 2)
</span>so the equation<span> is also true for n+1,
</span>finally, 10 + 30 + 60 + ... + 10n = 5n(n + 1) is always true for all positive integers n.
<span>
</span>
<h2>JK = 18m</h2><h2>_______________</h2>
<u>Step-by-step explanation:</u>
ΔJLK = ΔNLM ( <em>v</em><em>e</em><em>r</em><em>t</em><em>i</em><em>c</em><em>a</em><em>l</em><em>l</em><em>y</em><em> </em><em>o</em><em>p</em><em>p</em><em>o</em><em>s</em><em>i</em><em>t</em><em>e</em><em> </em>Δ)
ΔJKL = ΔNML ( <em>e</em><em>a</em><em>c</em><em>h</em><em> </em><em>9</em><em>0</em><em>°</em><em> </em><em>)</em>
so,
triangle JKL = triangle NML (<em>b</em><em>y</em><em> </em><em>A</em><em>A</em><em> </em><em>s</em><em>i</em><em>m</em><em>i</em><em>l</em><em>a</em><em>r</em><em>i</em><em>t</em><em>y</em><em>)</em>
JK / KL = NM / ML
JK / 21m = 42m / 49m
JK = 42 × 21 ÷ 49
JK = 18m
<h2>_______________</h2><h2>FOLLOW ME</h2>
Answer: yes.
Step-by-step explanation: i dont really get this one so i just said yes
Answer:
y=4x+11
Step-by-step explanation:
multiply 4 into the parentheses to get y-3=4x+8 then invert -3 so add three to both sides to get rid of it so instead of +8 its +11 so now its y=4x+11 and slope intercept is y=mx+b, so 4 is m, slope, and 11 is b, the y intercept i hope that helps
Answer:
814 in ^2
Step-by-step explanation:
2(wl x hl x hw)
hope this helps