Answer:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Exponential Properties
- Exponential Property [Rewrite]:

- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D)
<u>Step 2: Differentiate</u>
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7Bx%5E%5CBig%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20x%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbigg%29%27)
- Derivative Rule [Basic Power Rule]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B-1%7D%7B2%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D%20%5Cbigg%29)
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
It is non linear
Step-by-step explanation:
Linear means that it goes at a constant rate (aka a straight line)
This graph does not have a straight line so it is non-linear
Answer:
option D
Step-by-step explanation:
D is equal to 0 that is greater than B which is -2 by theory
Answer:
all work is shown and pictured
Answer:
The measure of arc HD is 20°
Step-by-step explanation:
we know that
The measurement of the outer angle is the semi-difference of the arcs it encompasses.
In the triangle of the figure , the measure of the third interior angle is equal to
180°-92°-38°= 50°
50°=(1/2)[(102+18)°-arc HD]
100°=[120°-arc HD]
arc HD=120°-100°=20°