Answer: The 95% confidence interval is approximately (55.57, 58.43)
======================================================
Explanation:
At 95% confidence, the z critical value is about z = 1.960 which you find using a table or a calculator.
The sample size is n = 17
The sample mean is xbar = 57
The population standard deviation is sigma = 3
The lower bound of the confidence interval is
L = xbar - z*sigma/sqrt(n)
L = 57 - 1.960*3/sqrt(17)
L = 55.5738905247863
L = 55.57
The upper bound is
U = xbar + z*sigma/sqrt(n)
U = 57 + 1.960*3/sqrt(17)
U = 58.4261094752137
U = 58.43
Therefore the confidence interval (L, U) turns into (55.57, 58.43) which is approximate.
Answer:
C. {-1, 5, 8}
Step-by-step explanation:
Use each of the domain values in the function to see what the corresponding range value is.
f(-1) = 5 -3(-1) = 8
f(0) = 5 -3(0) = 5
f(2) = 5 -3(2) = -1
The range is the set of numbers {-1, 5, 8}.
_____
<em>Additional comment</em>
The values in a set are generally listed lowest to highest. The coefficient of x in the equation for f(x) is negative, meaning the lowest range value will correspond to the highest domain value. If you start by finding f(2) = -1, you immediately eliminate all answer choices except B and C.
Those choices differ only in the middle value, so you can tell which is correct by evaluating f(x) for the middle domain value: f(0) = 5. Only one answer choice has both -1 and 5 in the set.
(There are two answers here: how you work the problem, and how you game a multiple choice question.)
Answer:
H0: μ = 5 versus Ha: μ < 5.
Step-by-step explanation:
Given:
μ = true average radioactivity level(picocuries per liter)
5 pCi/L = dividing line between safe and unsafe water
The recommended test here is to test the null hypothesis, H0: μ = 5 against the alternative hypothesis Ha: μ < 5.
A type I error, is an error where the null hypothesis, H0 is rejected when it is true.
We know type I error can be controlled, so safer option which is to test H0: μ = 5 vs Ha: μ < 5 is recommended.
Here, a type I error involves declaring the water is safe when it is not safe. A test which ensures that this error is highly unlikely is desirable because this is a very serious error. We prefer that the most serious error be a type I error because it can be explicitly controlled.
Answer:
4/7<6/7
Step-by-step explanation:
0.57142857142 < 0.85714285714