The Lagrangian is

with critical points where the partial derivatives vanish.



Substitute
into the last equation and solve for
:

Then we get two critical points,

We get an absolute maximum of
at the second point, and an absolute minimum of
at the first point.
To convert to scientific notation, start by moving the decimal place in the number until you have a coefficient between 1 and 10; here it is 3.45. The number of places to the left that you had to move the decimal point is the exponent. Here, we had to move the decimal 4 places to the right, so the exponent is -4.
2340000 = 2.34 x 10^6
0.000034= 3.4 x 10^-5
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
Answer:
103 and 102
Step-by-step explanation:
u add them together