<span><span>anonymous </span> 3 years ago</span>Proteins are involved in almost all of the cell's functions. They can act as:
Transportation: they can transport hydrophobic molecules in blood for example
Regulation: protein hormones and enzymes
Receptor: can act as receptors on cell surface and in the subsequent signal transduction (G-protein for instance)
It is true that all proteins are made up of up to 20 amino acids, but there are several reasons for their diverse actions:
-One reason is the possible sequence and number of amino acids: Met-Ser-His is different from Met-His-Ser for example. Besides, you have different chain length, for a protein is made up of long chain of polypeptide (longer than 50-70 amino acids) and can have any of the 20 amino acids with repetition, so using simple probability, this can provide up to practically unlimited combination with proteins that have chains of thousands of amino acids.
-Another very crucial reason for the diversity of protein action is the conformation. A protein passes by at least 3 conformational stages before becoming mature. The straight amino acid chain is the primary structure of the protein that can never be active. Spatial modification of this primary structure results in a secondary structure, Helix or Beta-pleated sheets (or other coiling structure), that is also inactive. Further coiling and bending of the secondary structure produce a 3-dimentional conformation that is the active form of the protein. Moreover, many proteins can undergo further conformational rearrangement and combination with other protein sub-units producing a quaternary structure.
Answer:
An atom is the smallest particle in a chemical element that holds its chemical properties. Although in the past it was thought impossible to break an atom, within modern chemistry we know that an atom is composed of subatomic particles, which compose the atomic model:
1) electrons, which have a negative charge, such a small size that it is immeasurable, and a mass much smaller than the other two subatomic particles; 2) protons, which have a positive charge; and 3) neutrons, which have no charge.
The protons and neutrons form a dense and massive atomic nucleus, which is called multipons nuclei. The electrons form a cloud of electrons that surround the nucleus.
Hello!
I believe the best answer to your question would be Option C) excess carbon dioxide.
Hope this helps, and have a lovely rest of your day :)
The action potential spreads through an axon by depolarizing adjacent membrane to threshold.
- K+ departs the cell after Na+, which enters the cell first. Ions can move freely across the axon membrane because of the difference during the action potential.
- Because sodium contains a positive charge, the neuron becomes more positive and depolarized. Potassium channels take longer to open. As soon as the cell does open, K+ rushes out, reversing the depolarization known as repolarization.
- Sodium channels close during the peak of the action potential when potassium leaves the cell. When potassium ions are effluxed, the membrane potential is lowered or the cell becomes hyperpolarized.
- Outside of the cell, the concentration of Na+ is greater than inside the cell. while the concentration of K+ is is greater inside the cell than outside.
learn more about action potential here: brainly.com/question/6705448
#SPJ4
A swamp has an exess in trees and stuff where as a marsh doesn't