Answer:
1. = 3xy + x - 2y - 4
2. = d^2(2c^3-8c^2d+3d^2)
Step-by-step explanation:
= 9x^2y^2 + 3x^2y - 6xy^2 - 12xy/3xy
First factor the top equation ….
= 3xy(3xy + x - 2y - 4)/3xy
If the top and the bottom both carry 3xy, you can cancel out both of them leaving you with ….
= 3xy + x - 2y - 4
= -16c^6d^6 + 64c^5d^7 - 24c^3d^8/-8c^3d^4
First factor the top equation ....
= -8c^3d^6(2c^3-8c^2d+3d^2)/-8c^3d^4
If the top and the bottom both carry -8c^3 you can cancel out both of them leaving you with ….
= <u>d^6</u>(2c^3-8c^2d+3d^2)/d^4
Apply the exponent rule with d^6 ....
= <u>d^4</u><u>d^2</u>(2c^3-8c^2d+3d^2)/d^4
cancel out d^4 ....
= d^2(2c^3-8c^2d+3d^2)