1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
3 years ago
8

Help me... y + 7 = 8 Find y! 100point!!!!!​

Mathematics
2 answers:
bulgar [2K]3 years ago
5 0
<h2>>> Answer </h2>

________

y + 7 = 8

y = 8 - 7

y = 1

inysia [295]3 years ago
5 0

Answer:

1

Step-by-step explanation:

y + 7 = 8

y = ?

Answer :

y + 7 = 8

y = 8 - 7

y = 1

You might be interested in
Add. ( 3 4 x - 1) + ( 3 4 x - 2)<br> A) 1 <br> B) -3 <br> C) 3 2 x - 3 <br> D) 3 4 x + 1
DedPeter [7]
The answer would be C. hope that helps out :)
8 0
4 years ago
Read 2 more answers
Parallel lines r and s are cut by two transversals, parallel lines t and u.
Goryan [66]

Answer:

i think is angle 7 n angle 15

Step-by-step explanation:

4 0
4 years ago
How do I find the integral<br> ∫10(x−1)(x2+9)dxint10/((x-1)(x^2+9))dx ?
defon
\int\frac{10}{(x-1)(x^2+9)}\ dx=(*)\\\\\frac{10}{(x-1)(x^2+9)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+9}=\frac{A(x^2+9)+(Bx+C)(x-1)}{(x-1)(x^2+9)}\\\\=\frac{Ax^2+9A+Bx^2-Bx+Cx-C}{(x-1)(x^2+9)}=\frac{(A+B)x^2+(-B+C)x+(9A-C)}{(x-1)(x^2+9)}\\\Updownarrow\\10=(A+B)x^2+(-B+C)x+(9A-C)\\\Updownarrow\\A+B=0\ and\ -B+C=0\ and\ 9A-C=10\\A=-B\ and\ C=B\to9(-B)-B=10\to-10B=10\to B=-1\\A=-(-1)=1\ and\ C=-1

(*)=\int\left(\frac{1}{x-1}+\frac{-x-1}{x^2+9}\right)\ dx=\int\left(\frac{1}{x-1}-\frac{x+1}{x^2+9}\right)\ dx\\\\=\int\frac{1}{x-1}\ dx-\int\frac{x+1}{x^2+9}\ dx=\int\frac{1}{x-1}-\int\frac{x}{x^2+9}\ dx-\int\frac{1}{x^2+9}\ dx=(**)\\\\\#1\ \int\frac{1}{x-1}\ dx\Rightarrow\left|\begin{array}{ccc}x-1=t\\dx=dt\end{array}\right|\Rightarrow\int\frac{1}{t}\ dt=lnt+C_1=ln(x-1)+C_1

\#2\ \int\frac{x}{x^2+9}\ dx\Rightarrow  \left|\begin{array}{ccc}x^2+9=u\\2x\ dx=du\\x\ dx=\frac{1}{2}\ du\end{array}\right|\Rightarrow\int\left(\frac{1}{2}\cdot\frac{1}{u}\right)\ du=\frac{1}{2}\int\frac{1}{u}\ du\\\\\\=\frac{1}{2}ln(u)+C_2=\frac{1}{2}ln(x^2+9)+C_2

\#3\ \int\frac{1}{x^2+9}\ dx=\int\frac{1}{x^2+3^2}\ dx=\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3\\\\therefore:\\\\\#1;\ \#2;\ \#3\Rightarrow(**)=ln(x-1)+C_1-\frac{1}{2}ln(x^2+9)+C_2-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3

\boxed{=ln(x-1)-\frac{1}{2}ln(x^2+9)-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C}



4 0
4 years ago
7+3√5/3+√5 - 7-3√5/3-√5 = a + b√5
daser333 [38]
<h3>Given:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

<h3>To Find:-</h3>

  • The value of a and b

<h3>Solution:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

\\ \sf \implies\frac{( \: 7 + 3 \sqrt{5} \:  \: (  3  -   \sqrt{5}) \:  \:  - 7  -  3 \sqrt{5} \:  \: (  3   +    \sqrt{5}) \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 21 - 7 \sqrt{5} \:   +  9    \sqrt{5} - 15) \:  \:  - ( \: 21  + 7 \sqrt{5} \:    -  9    \sqrt{5}  +  15)\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 6 + 2 \sqrt{5} ) \:  \:  - ( \: 6 - 2 \sqrt{5} )\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 6 + 2 \sqrt{5}  \:  \:  -  \: \: 6 - 2 \sqrt{5} \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{3  {}^{2}   -  {\sqrt{5} }^{2}  }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 9 - 5 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 4 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: \cancel{4 } \sqrt{5}  \:  \:   }{ \:  \:  \:  \:  \cancel{4 }\:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies \: \sqrt{5}  = a +  \sqrt{5}  \:  b\\

we can also write it as ;

\\ \sf \implies \: 0 + \sqrt{5}  = a +  \sqrt{5}  \:  b\\

★<u> </u><u>Henceforth, the value of a and b are</u> :

→ a = 0

→ b = 1

6 0
3 years ago
Read 2 more answers
What is the area of the parallelogram?
Molodets [167]
A=bh which means 900=50x18
8 0
3 years ago
Read 2 more answers
Other questions:
  • Help me with this plz
    12·2 answers
  • If a line falls on the points (6,8) and (1.5), what is it's slope?
    6·1 answer
  • 1) Let f(x) = (x+1) +4<br> (a) The natural domain of f is
    14·1 answer
  • Four less than five times a number is equal to 11
    14·1 answer
  • hi friends..please help me..it's very urgent... please give the solutions of the given bits... please....​
    13·1 answer
  • The PARTNERS at Starbucks receive tips ONCE a week. The TOTAL of tips were $2.03 per hour. Create a function to find the amount
    14·1 answer
  • Jack's average in math for the first nine week was an 88. His second nine weeks average decreased 12.5 . What was his average fo
    6·1 answer
  • Find sin A.16/12, b.16/20, c.12/20, d. 12/16, I will give branliest!!!, pls help!
    10·2 answers
  • When these data are graphed on a coordinate grid, the points all lie on the same line. What are the slope and y-intercept of thi
    11·1 answer
  • Ms. johnson uses a statistics program to analyze all the data collected by her students during a lab experiment about accelerati
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!