Given:
The linear equation is:

To find:
The statement that best describes the graph of the given linear equation.
Solution:
The slope intercept form of a linear function is:
...(i)
Where, m is the slope anf b is the y-intercept.
We have,

It can be written as:



(ii)
On comparing (i) and (ii), we get

Therefore, the graph has a slope of -1 and a y-intercept of 1. Hence option D is correct.
Assuming the equation is:
5/(x-5) = x/(x-5) - 5x/4
We first multiply by the LCD: 4(x-5)
20 = 4x - 5x(x-5)
20 = 4x - 5x^2 + 25x
5x^2 - 29x + 20 = 0
(5x - 4)(x - 5) = 0
x = 4/5, 5
Substituting x = 5 gives denominators of 0, which is extraneous.
Substituting x = 4/5 gives a valid equation, so this is the only correct solution.
Answer:
69.01 m
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you ...
Tan = Opposite/Adjacent
The tangent function is useful for problems like this. Let the height of the spire be represented by h. The distance (d) across the plaza from the first surveyor satisfies the relation ...
tan(50°) = (h -1.65)/d
Rearranging to solve for d, we have ...
d = (h -1.65)/tan(50°)
The distance across the plaza from the second surveyor satisfies the relation ...
tan(30°) = (101.65 -h)/d
Rearranging this, we have ...
d = (101.65 -h)/tan(30°)
Equating these expressions for d, we can solve for h.
(h -1.65)/tan(50°) = (101.65 -h)/tan(30°)
h(1/tan(50°) +1/tan(30°)) = 101.65/tan(30°) +1.65/tan(50°)
We can divide by the coefficient of h and simplify to get ...
h = (101.65·tan(50°) +1.65·tan(30°))/(tan(30°) +tan(50°))
h ≈ 69.0148 ≈ 69.01 . . . . meters
The tip of the spire is 69.01 m above the plaza.
Answer:
x = −8
Step-by-step explanation:
Answer:
0.9864
Step-by-step explanation:
The average sample mean is 295, and the standard deviation is:
σ = 15 / √17
σ = 3.64
The z-scores are:
z = (x − μ) / σ
z₁ = (-9) / 3.64
z₁ = -2.47
z₂ = (9) / 3.64
z₂ = 2.47
So the probability is:
P(-2.47 < Z < 2.47) = P(Z < 2.47) − P(Z < -2.47)
P(-2.47 < Z < 2.47) = 0.9932 − 0.0068
P(-2.47 < Z < 2.47) = 0.9864