The rate of change of a line is regarded as the slope/ gradient (m) of the line
The slope/ gradient (m) of the line moving through points (x₁,y₁) and (x₂,y₂) is given as

On substituting the above values in the formula above we will have the slope to be

Therefore,
The rate of change of the line through (2,3) and (3,8) is 5
Answer:
cost of dried fruit per pound=2.5 $/pound
cost of nuts per pound =2 $/pound
total cost=225$ =cost of dried fruit +total cost of nuts
To find the cost of dried fruit we need to multiply cost of dried fruit per pound and the number of bounds hence 2.5 x where x is the number of bounds
which is the total cost of dried fruit and consequently 2y is total cost of nuts where y is the weight of nuts in pound
Step-by-step explanation:
I put the solution on the paper
Answer:
1. Proved down
2. proved down
3. f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
Step-by-step explanation:
Let us explain how to solve the question
∵ f(0) = -20, f(n) = f(n - 1) - 5 for n > 1
→ That means we have an arithmetic sequence with constant
difference -5 and first term -20
1. → f(1) means we need to find the second term, which equal the
term - 5
∵ f(1) means n = 1
∴ f(1) = f(1 - 1) - 5
∴ f(1) = f(0) - 5
∵ f(0) = -20
∴ f(1) = -20 - 5 → Proved
2. → f(3) means we need to find the third term, which equal the
second term - 5
∵ f(3) means n = 3
∴ f(3) = f(3 - 1) - 5
∴ f(3) = f(2) - 5
→ f(2) = f(1) - 5
∵ f(1) = -20 - 5
∴ f(2) = [-20 - 5] - 5 = -20 - 5 - 5
∴ f(3) = [-20 - 5 - 5] - 5
∴ f(3) = -20 - 5 - 5 - 5 → Proved
3. → From 1 and 2 we notice that the number of -5 is equal to n,
at n = 1 there is one (-5), when n= 3 there are three (-5)
∵ n = 10
∴ There are ten (-5)
∴ f(10) = -20 - 5(10)
∴ f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 → Proved