First multiply the power, 3 x -2 = -6
Thus, 5^-6
Make the power positive
1/5^6
1/15625
Answer:
Determination of HYP,OPP,ADJ with respect to x.
<u>Opposite</u><u> </u><u>side</u><u> </u><u>of</u><u> </u><u>right</u><u> </u><u>angle</u><u>:</u><u>Hypotenuse</u><u>:</u><u> </u><u>AC</u>
<u>Opposite</u><u> </u><u>side</u><u> </u><u>of</u><u> </u><u>given</u><u> </u><u>angle</u><u>:</u><u> </u><u>Opp</u><u>:</u><u>BC</u>
<u>remaining</u><u> </u><u>side</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>triangle</u><u>:</u><u> </u><u>Adjacent</u><u>:</u><u>AB</u><u>.</u>
First term is -7, so a_1 = -7
To get the next term, we add on 4. We can see this if we subtract like so
d = (2nd term) - (1st term) = (-3) - (-7) = -3+7 = 4
So d = 4 is the common difference.
Apply a_1 = -7 and d = 4 to get...
a_n = a_1 + d*(n-1)
a_n = -7 + 4*(n-1)
a_n = -7 + (n-1)*4
Answer: Choice A
<em>To convert decimal number 1</em><em>2</em><em>3</em><em> to quinary, follow these steps:</em>
<em>1</em><em>.</em><em> </em><em>Divide 1</em><em>2</em><em>3</em><em> </em><em>by 5 keeping notice of the quotient and the remainder.</em>
<em>2</em><em>.</em><em>Continue dividing the quotient by 5 until you get a quotient of zero.</em>
<em>3</em><em>.</em><em> </em><em>Then just write out the remainders in the reverse order to get quinary equivalent of decimal number 1</em><em>2</em><em>3</em><em>.</em>
Answer:
(A) 5.47 km
(B) 1.38 km
Step-by-step explanation:
The relationship between Pressure (mmHg) and Height (km) is given by the equation below:
p =760 e⁻ 0.145h----------------------------------------------------- (1)
(a) The height of the aircraft can be calculated by making 'h' the subject of equation (1)
In (p/760) = -0.145 h
h = -In (p/760) /0.145
h= In (760/p)/ 0.145------------------------------------------------- (2)
For the aircraft, p =344 mmHg; substituting into (2)
h = In (760/344)/0.145
= 0.7926/0.145
= 5.4662 km
≈ 5.47 km
(b) p= 622 mmHg at the mountain top. Substituting into equation (2) we have:
h = In (760/622)/0.145
= 0.2003 / 0.145
= 1.3813 km
≈ 1.38 km