Answer:
f(n)=-5-3n
Step-by-step explanation:
Given the recursive formula of a sequence
f(1)=−8
f(n)=f(n−1)−3
We are to determine an explicit formula for the sequence.
f(2)=f(2-1)-3
=f(1)-3
=-8-3
f(2)=-11
f(3)=f(3-1)-3
=f(2)-3
=-11-3
f(3)=-14
We write the first few terms of the sequence.
-8, -11, -14, ...
This is an arithmetic sequence where the:
First term, a= -8
Common difference, d=-11-(-8)=-11+8
d=-3
The nth term of an arithmetic sequence is determined using the formula:
T(n)=a+(n-1)d
Substituting the derived values, we have:
T(n)=-8-3(n-1)
=-8-3n+3
T(n)=-5-3n
Therefore, the explicit formula for f(n) can be written as:
f(n)=-5-3n
No, the Pythgorean Theorem only applies to right triangles. To get two right triangles, you divide a rectangle diagonally. Dividing a hexagon into two pieces produces trapezoids or pentagons depending where it is divided.
Answer:
The width which gives the greatest area is 7.5 yd
Step-by-step explanation:
This is an application of differential calculus. Given the area as a function of the width, we simply need to differentiate the function with respect to x and equate to zero which yields; 15-2x=0 since the slope of the graph is zero at the turning points. Solving for x yields, x=7.5 which indeed maximizes the area of the pen