= 394 R 1
= 394 1/3
1183 divided by 3 equals
394 with a remainder of 1
Answer:
17
Step-by-step explanation:
8.5 / 0.5
6a. 1 - 2sin(x)² - 2cos(x)² = 1 - 2(sin(x)² +cos(x)²) = 1 - 2·1 = -1
6c. tan(x) + sin(x)/cos(x) = tan(x) + tan(x) = 2tan(x)
6e. 3sin(x) + tan(x)cos(x) = 3sin(x) + (sin(x)/cos(x))cos(x) = 3sin(x) +sin(x) = 4sin(x)
6g. 1 - cos(x)²tan(x)² = 1 - cos(x)²·(sin(x)²)/cos(x)²) = 1 -sin(x)² = cos(x)²
Solve the "f" function with substitute 4 and solve the "g" function with what we get for the "f" function.
f(4) = 2(8) + 3
f(4) = 16 + 3
f(4) = 19
g(19) = 4(19) - 1
g(19) = 76 - 1
g(19) = 75
Best of Luck!
The given expression is ![3b^2*(\sqrt[3]{54a}) + 3*(\sqrt[3]{2ab^6})](https://tex.z-dn.net/?f=%203b%5E2%2A%28%5Csqrt%5B3%5D%7B54a%7D%29%20%2B%203%2A%28%5Csqrt%5B3%5D%7B2ab%5E6%7D%29%20)
This can be simplified as :
= ![3*b^2*(\sqrt[3]{27 *2*a}) + 3*(\sqrt[3]{2*a*b^6})](https://tex.z-dn.net/?f=%203%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B27%20%2A2%2Aa%7D%29%20%2B%203%2A%28%5Csqrt%5B3%5D%7B2%2Aa%2Ab%5E6%7D%29%20)
We know that: ![\sqrt[3]{27} = 3](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B27%7D%20%20%3D%203%20%20%20)
Similarly we also can simplify: ![\sqrt[3]{b^6} = b^2](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B3%5D%7Bb%5E6%7D%20%20%3D%20b%5E2%20)
So our expression will look like this:
= ![3*3*b^2*(\sqrt[3]{2a}) + 3*b^2*(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%203%2A3%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20%2B%203%2Ab%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
= ![9b^2*(\sqrt[3]{2a}) + 3b^2*(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%209b%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20%2B%203b%5E2%2A%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
=![\sqrt[3]{2a}*(9b^2 + 3b^2)](https://tex.z-dn.net/?f=%20%20%5Csqrt%5B3%5D%7B2a%7D%2A%289b%5E2%20%2B%203b%5E2%29%20)
=![\sqrt[3]{2a}*(12b^2)](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B2a%7D%2A%2812b%5E2%29%20)
This can also be written as:
![12b^2(\sqrt[3]{2a})](https://tex.z-dn.net/?f=%2012b%5E2%28%5Csqrt%5B3%5D%7B2a%7D%29%20)
So the Answer is Option B