Table a is 3 b is 2 and c is 1
from the diagram, we can see that the height or line perpendicular to the parallel sides is 8.5.
likewise we can see that the parallel sides or "bases" are 24.3 and 9.7, so
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ h=8.5\\ a=24.3\\ b=9.7 \end{cases}\implies \begin{array}{llll} A=\cfrac{8.5(24.3+9.7)}{2}\\\\ A=\cfrac{8.5(34)}{2}\implies A=144.5~in^2 \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D8.5%5C%5C%20a%3D24.3%5C%5C%20b%3D9.7%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B8.5%2824.3%2B9.7%29%7D%7B2%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B8.5%2834%29%7D%7B2%7D%5Cimplies%20A%3D144.5~in%5E2%20%5Cend%7Barray%7D)
T=8√t
T=temperature
t=time in minutes.
If T=48, we have to calculate the time.
48=8√t
(48)²=(8√t)²
2304=64t
t=2304 / 64=36
answer: 48 degrees Celsius will be reached in 36 minutes.
Answer:
12 cm
Step-by-step explanation:
First, we find the scale factor from cone S to cone T.
ratio of volumes = (vol of T)/(vol of S) = (6144 pi cm^3)/(768 pi cm^3) = 8
The ratio of the volumes is 8:1
The scale factor, which is the ratio of linear dimensions (height, radius, etc.), is the cubic root of the ratio of the volumes.
scale factor = cubic root of 8 = 2
The height of cube T is 24 cm, so the height of cube S is 24 cm/2 = 12 cm.