Answer:
3. 4x^2y
Step-by-step explanation:
The GCF of 36 and 14 is 4.
The GCF of x^2y and x^2y^2 is x^2y
Multiply the two GCF and you get 4x^2y
Answer:β=√10 or 3.16 (rounded to 2 decimal places)
Step-by-step explanation:
To find the value of β :
- we will differentiate the y(x) equation twice to get a second order differential equation.
- We compare our second order differential equation with the Second order differential equation specified in the problem to get the value of β
y(x)=c1cosβx+c2sinβx
we use the derivative of a sum rule to differentiate since we have an addition sign in our equation.
Also when differentiating Cosβx and Sinβx we should note that this involves function of a function. so we will differentiate βx in each case and multiply with the differential of c1cosx and c2sinx respectively.
lastly the differential of sinx= cosx and for cosx = -sinx.
Knowing all these we can proceed to solving the problem.
y=c1cosβx+c2sinβx
y'= β×c1×-sinβx+β×c2×cosβx
y'=-c1βsinβx+c2βcosβx
y''=β×-c1β×cosβx + (β×c2β×-sinβx)
y''= -c1β²cosβx -c2β²sinβx
factorize -β²
y''= -β²(c1cosβx +c2sinβx)
y(x)=c1cosβx+c2sinβx
therefore y'' = -β²y
y''+β²y=0
now we compare this with the second order D.E provided in the question
y''+10y=0
this means that β²y=10y
β²=10
B=√10 or 3.16(2 d.p)
Answer:
If corresponding vertices on an image and a preimage are connected with line segments, the line segments are divided equally by the line of reflection. That is, the perpendicular distance from the line of reflection to either of the corresponding vertices is the same. Line is a perpendicular bisector of the connecting line segments.
Step-by-step explanation:
Answer:
<h2>7</h2>
Step-by-step explanation:
![\left[\left(11\:-\:4\right)^3\right]^2\:\div \left(4\:+\:3\right)^5\\\\\frac{\left(\left(11-4\right)^3\right)^2}{\left(4+3\right)^5}\\\\\mathrm{Subtract\:the\:numbers:}\:11-4=7\\\\=\frac{\left(7^3\right)^2}{\left(4+3\right)^5}\\\\\mathrm{Add\:the\:numbers:}\:4+3=7\\\\=\frac{\left(7^3\right)^2}{7^5}\\\\\left(7^3\right)^2=7^6\\\\=\frac{7^6}{7^5}\\\\\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}\\\\\frac{7^6}{7^5}=7^{6-5}\\\\\mathrm{Subtract\:the\:numbers:}\:6-5=1\\\\=7](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft%2811%5C%3A-%5C%3A4%5Cright%29%5E3%5Cright%5D%5E2%5C%3A%5Cdiv%20%5Cleft%284%5C%3A%2B%5C%3A3%5Cright%29%5E5%5C%5C%5C%5C%5Cfrac%7B%5Cleft%28%5Cleft%2811-4%5Cright%29%5E3%5Cright%29%5E2%7D%7B%5Cleft%284%2B3%5Cright%29%5E5%7D%5C%5C%5C%5C%5Cmathrm%7BSubtract%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A11-4%3D7%5C%5C%5C%5C%3D%5Cfrac%7B%5Cleft%287%5E3%5Cright%29%5E2%7D%7B%5Cleft%284%2B3%5Cright%29%5E5%7D%5C%5C%5C%5C%5Cmathrm%7BAdd%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A4%2B3%3D7%5C%5C%5C%5C%3D%5Cfrac%7B%5Cleft%287%5E3%5Cright%29%5E2%7D%7B7%5E5%7D%5C%5C%5C%5C%5Cleft%287%5E3%5Cright%29%5E2%3D7%5E6%5C%5C%5C%5C%3D%5Cfrac%7B7%5E6%7D%7B7%5E5%7D%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Aexponent%5C%3Arule%7D%3A%5Cquad%20%5Cfrac%7Bx%5Ea%7D%7Bx%5Eb%7D%3Dx%5E%7Ba-b%7D%5C%5C%5C%5C%5Cfrac%7B7%5E6%7D%7B7%5E5%7D%3D7%5E%7B6-5%7D%5C%5C%5C%5C%5Cmathrm%7BSubtract%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A6-5%3D1%5C%5C%5C%5C%3D7)