Since the angles add to 180°, angle F is 72°.
Using the law of sines,
DF/sin72° = 24/sin45°
x = 32.28
So, did you just guess at A?
This is just an answer from another website, but it should still work.
38/9
46/7
44/5
11/4
19/2
11/6
23/3
41/8
52/7
34/5
To solve this problem, we make use of the Binomial
Probability equation which is mathematically expressed as:
P = [n! / r! (n – r)!] p^r * q^(n – r)
where,
n = the total number of gadgets = 4
r = number of samples = 1 and 2 (since not more than 2)
p = probability of success of getting a defective gadget
q = probability of failure = 1 – p
Calculating for p:
p = 5 / 15 = 0.33
So,
q = 1 – 0.33 = 0.67
Calculating for P when r = 1:
P (r = 1) = [4! / 1! 3!] 0.33^1 * 0.67^3
P (r = 1) = 0.3970
Calculating for P when r = 2:
P (r = 2) = [4! / 2! 2!] 0.33^2 * 0.67^2
P (r = 2) = 0.2933
Therefore the total probability of not getting more than
2 defective gadgets is:
P = 0.3970 + 0.2933
P = 0.6903
Hence there is a 0.6903 chance or 69.03% probability of
not getting more than 2 defective gadgets.
We simply replace a with -9
k(-9) = 4 * -9 - 4
k(-9) = -40
:)
Answer:
a. With 90% confidence the proportion of all Americans who favor the new Green initiative is between 0.6290 and 0.6948.
b. If the sample size is changed, the confidence interval changes as the standard error depends on sample size.
About 90% percent of these confidence intervals will contain the true population proportion of Americans who favor the Green initiative and about 10% percent will not contain the true population proportion.
Step-by-step explanation:
We have to calculate a 90% confidence interval for the proportion.
The sample proportion is p=0.6619.

The standard error of the proportion is:

The critical z-value for a 90% confidence interval is z=1.6449.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:
The 90% confidence interval for the population proportion is (0.6290, 0.6948).