1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yakvenalex [24]
2 years ago
6

Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36

Mathematics
1 answer:
eduard2 years ago
3 0

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

You might be interested in
What is the answer of 2m^2 * 2m^3
kipiarov [429]

Answer:

4m^5

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Somebody help please
Goryan [66]

Answer:

C

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Let us say there are five flavors of icecream: banana, chocolate, lemon, strawberry and vanilla. we can have three scoops. how m
Morgarella [4.7K]
C(5,3)=\dfrac{5!}{3!2!}=\dfrac{4\cdot5}{2}=10
6 0
3 years ago
Find the equation for the line that passes through the point (−2,0), and that is perpendicular to the line with the equation 2/3
patriot [66]

Answer:

y = 3/2 x + 3

Step-by-step explanation:

2/3 x + y = -14/3

y = -2/3 x − 14/3

The slope of this line is -2/3.  So the perpendicular slope is the opposite of the inverse:

m = -1 / (-2/3)

m = 3/2

We know the slope of the line and a point on the line, so using point-slope form:

y − 0 = 3/2 (x − (-2))

Simplifying into slope-intercept form:

y = 3/2 (x + 2)

y = 3/2 x + 3

5 0
2 years ago
Solve the following please
Dima020 [189]

Answer:

x=4

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Mary is wrapping a can of paint as a gag gift for a friend. If the can is 11 inches high and has a diameter of 7 inches. How man
    7·1 answer
  • In △ABC, CM is the median to AB and side BC is 12 cm long. There is a point P∈CM and a line AP intersecting BC at point Q. Find
    13·1 answer
  • Is (x-3) a factor of (x^3-3x^2+2x+2)
    6·2 answers
  • Andy is buying a car.
    5·1 answer
  • Which expression has a value of 26 when a=4 and b=5
    7·1 answer
  • Irene wants to list the factors for 88.she writes 2, 4, 8, 11, 22, 44 and 88 is Irene correct?Explain.
    5·1 answer
  • One angle is a right angle
    9·1 answer
  • Find each square root Solve each equation Check your solution(s). Find each cube root.
    9·1 answer
  • Multiply.
    14·1 answer
  • Florida has a population of about 2 X 10'. The Earth has a population of about 8 X 109. About how many times more populated is t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!