1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yakvenalex [24]
3 years ago
6

Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36

Mathematics
1 answer:
eduard3 years ago
3 0

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

You might be interested in
The graph above is a graph of what function?
AveGali [126]

Answer:

what are the types of functions

Step-by-step explanation:

5 0
2 years ago
Solve for x9(x + 1) = 25 + x
vaieri [72.5K]
When you expand the equation, you will have
9x + 9=25 + x
Next you have to collect like terms
+x will go over the equality sign to become -x. The same applies to +9
9x - x=23 - 9
9x minus x is 8x
8x=14
Divide both sides by 8
x=14/8
You will have 1 6/8
6 is the remainder while 1 is the number of times 8 divided 14.
In decimal, it will be 1.75
Hope that helped. Good luck
8 0
3 years ago
Read 2 more answers
Does anyone live in Alabama
Crank

Answer: No. Do you?

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Solve 2x2 8x - 12 = 0 by completing the square. show step-by-step solution
malfutka [58]
Group x terms
(2x^2+8x)-12=0
undistribute 2
2(x^2+4x)-12=0
take 1/2 of 4 and square it, add negative and positive of it insde (2^2=4)
2(x^2+4x+4-4)-12=0
factor perfect square
2((x+2)^2-4)-12=0
distribute
2(x+2)^2-8-12=0
2(x+2)^2-20=0
add 20 to both sides
2(x+2)^2=20
divide both sides by 2
(x+2)^2=10
sqrt both sides, remember to take positive and negative root
x+2=+/-√10
minus 2 both sides


x=-2+√10 and -2-√10
8 0
3 years ago
Use the ratio go solve the percent problem
Drupady [299]
Answer
40%
32 is what percent of 80? =40.
5 0
3 years ago
Other questions:
  • 3 times of 4 yards 2 foot
    11·1 answer
  • The length of the hypotenuse of a right triangle is 157 units. The length of one leg of the triangle is 132. Lara wrote the foll
    13·2 answers
  • 3x + 3<br> X + 8<br> What is the perimeter of each polygon?
    5·1 answer
  • I need help with this question.
    14·1 answer
  • Does sofia ever stop talking
    14·1 answer
  • Which description compares the vertical asymptotes of function A and function B correctly?
    8·1 answer
  • What is 6x10 to the negative third power
    15·1 answer
  • Simplify the radical expression square root of x^8y^18
    10·1 answer
  • The center of a circle is at (–4, 2) and its radius is 9.
    7·2 answers
  • Solve the system of linear equations by substitution.<br><br> 8x−13y=0<br> 12x+3=y
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!