1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yakvenalex [24]
2 years ago
6

Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36

Mathematics
1 answer:
eduard2 years ago
3 0

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

You might be interested in
If in a sample of 355 adult males, we have a mean total cholesterol level of 185 mg, with s = 16. What is the 95% confidence int
sladkih [1.3K]

Answer:

Step-by-step explanation:

We want to determine a 95% confidence interval for the mean total cholesterol level of all males.

Number of sample, n = 355

Mean, u = 185 mg

Standard deviation, s = 16

For a confidence level of 95%, the corresponding z value is 1.96. This is determined from the normal distribution table.

We will apply the formula

Confidence interval

= mean +/- z ×standard deviation/√n

It becomes

185 +/- 1.96 × 16/√355

= 185 +/- 1.96 × 0.849

= 185 +/- 1.66404

The lower end of the confidence interval is 185 - 1.66404 =183.336

The upper end of the confidence interval is 185 + 1.66404 = 186.66

Therefore, with 95% confidence interval, the mean total cholesterol level of all males is between 183.336 mg and 186.66 mg

5 0
3 years ago
REAL LIFE A cylindrical hazardous waste container has a diameter of 1.5 feet and a height of 1.6 feet. Abo
aivan3 [116]

Answer:

It can hold up to 1.256ft^3 of waste

<em></em>

Step-by-step explanation:

Given

D = 1.5ft -- Diameter

h = 1.6ft -- height

Required

Determine the amount of waste it can hold

This simply means that we calculate the volume of the cylindrical container.

And this is calculated using:

Volume = \pi r^2h

Where

\pi = 3.14

and

r = \frac{D}{2}

r = \frac{1.5}{2}

r = 0.75

So, we have:

Volume = 3.14 * 0.5^2 * 1.6

Volume = 1.256ft^3

<em>Hence, it can hold up to </em>1.256ft^3<em> of waste</em>

3 0
3 years ago
What is this answer?
zhannawk [14.2K]

I'm NOT 100% confident in my answers.

Graph 1:

Range: Option B

Graph 2:

Range: Option A

The range has to start at zero since that's the lowest point we can go, only one with zero is first option.

RATE AS BRAINLIEST

8 0
2 years ago
Lily is making granola. She uses almonds, walnuts, and pecans in the ratio 4 : 3 : 8. Lily uses 40 ounces of pecans. A) find the
SVETLANKA909090 [29]
3*5=15 =75 ounces, so 75 ounces is your answer
8 0
3 years ago
Sierra has plotted two vertices of a rectangle at (3,2) and (8,2). What is the length of the sides of the rectangle
Eddi Din [679]

Answer:

5units

Step-by-step explanation:

Given the two vertices of a rectangle at (3,2) and (8,2). We are to calculate the distance between the two points.

Using the formula

D = √(x2-x1)²+(y2-y1)²

D = √(2-2)²+(8-3)²

D = √0+5²

D =  √25

D = 5

Hence the length of the side of the rectangle is 5units

4 0
2 years ago
Other questions:
  • Find the tangent of both angle A and angle B.
    12·1 answer
  • Which of the equations below could be the equation of this parabola?
    8·1 answer
  • Which decimal is equivalent to 168/55?<br><br> A. 3.0<br> B. 3.05<br> C. 3.054<br> D.3.054
    10·1 answer
  • Find the value of x ASAP
    13·1 answer
  • The number of U.S. women that entered the workforce during World War II was in the
    15·1 answer
  • HURRY AND ANSWER
    9·1 answer
  • Solve the equation using the distributive property and properties of equality. Negative 5 (a + 3) = negative 55 14 -8 8 -14
    10·1 answer
  • I need the answer pls
    9·1 answer
  • A line passes through the point (-8,8) and has a slope of 5/4. Write the equation in slope- intercept form.
    5·2 answers
  • Unit Test 4
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!