Answer:
idk
Step-by-step explanation:
Answer: -1/2
Step-by-step explanation:
X multiplied by two plus six
Answer:
The margin of error is 6.45.
Step-by-step explanation:
The complete question is:
As an early intervention effort, a school psychologist wants to estimate the average score on the Stanford-Binet Intelligence Scale for all students with a specific type of learning disorder using a simple random sample of 36 students with the disorder.
Determine the margin of error, of a 99% confidence interval for the mean IQ score of all students with the disorder. Assume that the standard deviation IQ score among the population of all students with the disorder is the same as the standard deviation of IQ score for the general population, σ = 15 points.
The (1 - <em>α</em>)% confidence interval for population mean <em>μ</em> is:

The margin of error for this interval is:

Given:
<em>n</em> = 36
σ = 15
(1 - <em>α</em>)% = 99%
Compute the critical value of <em>z</em> for 99% confidence level as follows:

*Use a <em>z</em>-table.
Compute the value of MOE as follows:



Thus, the margin of error is 6.45.
<span>Critical points are where the derivative is 0, i.e. where it crosses the x - axis
The Critical points lies where the derivative is 0, while it crosses the x-axis, SO, in this case the choice 3 looks like best answer for this.
</span>