25x/45=-65
25x=2925
x=117
I wasn't sure if you wanted a solution
Slope = (y2-y1)/(x2-x1) = (8-2)/(3-1) = 6/2 = 3. So the answer is c.
Step-by-step explanation:
You can find the area of a right triangle the same as you would any other triangle by using the following formula:
A = (1/2)bh, where A is the area of the triangle, b is the length of the base and h is the height of the triangle; However, with a right triangle, it's much more convenient in finding its area if we utilize the lengths of the two legs (the two sides that are shorter than the longest side, the hypotenuse and that are perpendicular to each other and thus form the right angle of the right triangle), that is, since the two legs of a right triangle are perpendicular to each other, when we treat one leg as the base, then, consequently, we can automatically treat the length of the other leg as the height, and if we initially know the lengths of both legs, then we can then just plug this information directly into the area formula for a triangle to find the area A of the right triangle.
For example: Find the area of a right triangle whose legs have lengths of 3 in. and 4 in.
Make the 4 in. leg the base. Since the two legs of a right triangle are perpendicular to each other, then the length of the other leg is automatically the height of the triangle; therefore, plugging this information into the formula for the area of a triangle, we have:
A = (1/2)bh
= (1/2)(4 in.)(3 in.)
= (1/2)(12 in.²)
A = 6 in.² (note: in.² means square inches)
Answer:
92,000 words
Step-by-step explanation: 46 students write 2 essays
46 times 2= 92
92 times 1000 words per essay is 92,000 words
Answer:
see the explanation
Step-by-step explanation:
see the attached figure to better understand the problem
we know that
m∠PQS+m∠SQR=m∠PQR ----> equation A (by Addition Angle Postulate)
we have that
m∠PQR=90° ----> equation B given problem (because is a right angle)
substitute equation B in equation A
m∠PQS+m∠SQR=90°
Remember that
Two angles re complementary is their sum is equal to 90 degrees (Definition of complementary angles)
therefore
m∠PQS and m∠SQR are complementary angles