Answer:
Option C
The Area Of Shaded Region is 50.2 cm²
Step-by-step explanation:
For A given Circle,
<u>For</u><u> </u><u>Small</u><u> </u><u>(</u><u>Non-Shaded</u><u>)</u><u> </u><u>Circle</u><u>:</u>
Diameter (d) = 6 cm
Radius = d ÷ 2 = 6/2 = 3 cm
For Area of Small (Non-Shaded) Circle
<h3>
<u>Formula</u><u>:</u></h3>
<u>A = πr²</u>
A = 3.14 × (3)² cm
A = 3.14 × 9 cm
A = 28.26 cm²
<u>For </u><u>A</u><u>r</u><u>e</u><u>a</u><u> </u><u>of</u><u> </u><u>Big</u><u> (</u><u>S</u><u>haded) Circle:</u>
Diameter (d) = 10 cm
Radius = d ÷ 2 = 10/2 = 5 cm
For Area of Small (Non-Shaded) Circle
<h3><u>Formula:</u></h3>
<u>A = πr²</u>
A = 3.14 × (5)² cm
A = 3.14 × 25 cm
A = 78.5 cm²
<u>For</u><u> </u><u>The</u><u> </u><u>Area</u><u> </u><u>Of</u><u> </u><u>Shaded</u><u> </u><u>Region</u>
Area of Big Circle - Area of Small Circle
78.5 cm² - 28.26 cm² = 50.24 cm²
Thus, The Area Of Shaded Region is
50.2 cm²
<u>-TheUnknownScientist</u>
Answer:
$1.25&75
Step-by-step explanation:
8 hotdogs for 10 dollars =
1 hotdog for 1.25 dollars.
1.25×60 = 75
The general formula for the margin of error would be:
z * √[p (1-p) ÷ n]
where:
z = values for selected confidence level
p = sample proportion
n = sample size
Since the confidence level is not given, we can only solve for the
<span>√[p (1-p) ÷ n] part.
</span>
p = 44/70
n = 70
√[44/70 (1 - (44/70) ÷ 70]
√[0.6286 (0.3714)] ÷ 70
√0.2335 ÷ 70
√0.0033357 = 0.05775 or 0.058 Choice B.
434 rounded to the nearest ten is 430.
Hope this helps
Answer:
sin(α+β)/sin(α-β) ==(tan α+tan β)/(tan α-tan β )
Step-by-step explanation:
We have to complete
sin(α+β)/sin(α-β) = ?
The identities that will be used:
sin(α+β)=sin α cos β+cos α sin β
and
sin(α-β)=sin α cos β-cos α sin β
Now:
= sin(α+β)/sin(α-β)
=(sin α cos β+cos α sin β)/(sin α cos β-cos α sin β)
In order to bring the equation in compact form we wil divide both numerator and denominator with cos α cos β
= (((sin α cos β+cos α sin β))/(cos α cos β ))/(((sin α cos β-cos α sin β))/(cos α cos β))
=((sin α cosβ)/(cos α cos β )+(cos α sin β)/(cos α cos β ))/((sin α cos β)/(cos α cos β )-(cos α sin β)/(cos α cos β))
=(sin α/cos α + sin β/cos β )/(sin α/cos β - sin β/cos β)
=(tan α+tan β)/(tan α-tan β )
So,
sin(α+β)/sin(α-β) ==(tan α+tan β)/(tan α-tan β)