To construct a perpendicular bisector you set the compass to a span which is greater than half the length of the given line. Then setting the point at one end of the line construct an arc passing through the line . Then repeat this process from the other side of the line keeping the compass at the same setting.
Now draw the perpendicular bisector through the 2 intersections of the arcs. That's it.
Answer:
Step-by-step explanation:
it's obtuse the sides are to wide
Answer:
They are opposite angles. If you rotate the figure SQM 180 degrees counter clockwise, they will be the exact same triangle and therefore the exact same measure.
Step-by-step explanation:
36 over 25 is the answer Give the other person brainiest Thank U!
The solution is the point of intersection between the two equations.
Assuming you have a graphing calculator or a program to lets you graph equations (I use desmos) you simply put in the equetions and note down the coordinates of the point of intersection.
In the graph the first equation is in blue and the second in red.
The point of intersection = the solution = (-6 , -1)
If you dont have access to a graphing calculator you could draw the graphs by hand;
1) Draw a table of values for each equation; you do this by setting three or four values for x and calculating its image in y (you can use any values of x)
y = 0.5 x + 2 (Im writing 0.5 instead of 1/2 because I find its easier in this format)
x | y
-1 | 1.5 * y = 0.5 (-1) + 2 = 1.5
0 | 2 * y = 0.5 (0) + 2 = 2
1 | 2.5 * y = 0.5 (1) + 2 = 2.5
2 | 3 * y = 0.5 (2) + 2 = 3
y = x + 5
x | y
-1 | 4 * y = (-1) + 5 = 4
0 | 5 * y = (0) + 5 = 5
1 | 6 * y = (1) + 5 = 6
2 | 7 * y = (2) + 5 = 7
2) Plot these point on the graph
I suggest to use diffrent colored points or diffrent kinds of point markers (an x or a dot) to avoid confusion about which point belongs to which graph
3) Using a ruler draw a line connection all the dots of one graph and do the same for the other
4) The point of intersection is the solution