Answer:
(1, -2)
(-8, -2)
Step-by-step explanation:
(1 , -6) and (-8 , -6)
1 - (-8) = 9
we know that the length of the side that we know the vertices is 9
from there we make an equation with the sum of the sides equal to the perimeter
we will have 2 times 9 and 2 times x beacause it is a rectangle
x + x + 9 +9 = 26
2x + 18 = 26
2x = 26 - 18
2x = 8
x = 8/2
x = 4
Now that we know the missing side we just have to add or subtract this value to the coordinate in and of the vertices we have and we will obtain the missing vertices
(1, -6 + 4)
(1, -2)
( -8, -6+4 )
(-8, -2)
<span>
Exercise #1:
Point H = (–2, 2)
Point J = (–2, –3)
Point K = (3, –3)
It would be very helpful if you could take a pencil and a piece
of paper, and sketch a graph with these points on it. Then
you'd immediately see what's going on.
Notice that points H and J have the same x-coordinate, but
different y-coordinates, so they're on the same vertical line.
</span><span>Notice that points J and K have different x-coordinates but
the same y-coordinate, so they're on the same horizontal line.
Notice that point-J is on both the horizontal line and the vertical
line, so the lines meet there, and they're perpendicular.
Point-J is one corner of the square.
H is another corner of the square. It's 5 units above J.
K is another corner of the square. It's 5 units to the right of J.
The fourth corner is (2, 3) ... 5 to the right of H,
and 5 above K.
____________________________________
Exercise #2:
</span><span>Point H = (6, 2)
Point J = (–2, –4)
Point K = (-2, y) .
</span><span>It would be very helpful if you could take a pencil and a piece
of paper, and sketch a graph with these points on it. Then
you'd immediately see what's going on.
</span><span>Notice that points J and K have the same x-coordinate, but
different y-coordinates, so they're on the same vertical line.
We need K to connect to point-H in such a way that it's on
the same horizontal line as H. Then the vertical and horizontal
lines that meet at K will be perpendicular, and we'll have the
right angle that we need there to make the right triangle.
So K and H need to have the same y-coordinate.
H is the point (6, 2). So K has to be up at (2, 2) .
____________________________________________
Exercise #3:
</span>
<span>Point H = (-6, 2)
Point J = (–6, –1)
Point K = (4, 2) .
</span>
<span>It would be very helpful if you could take a pencil and a piece
of paper, and sketch a graph with these points on it. Then
you'd immediately see what's going on.
This exercise is exactly the same as #1, except that it's a
rectangle instead of a square. It's still make of horizontal
and vertical lines, and that's all we need to know in order
to solve it.</span><span>
Notice that points H and J have the same x-coordinate, but
different y-coordinates, so they're on the same vertical line.
</span><span>Notice that points H and K have different x-coordinates but
the same y-coordinate, so they're on the same horizontal line.
Notice that point-H is on both the horizontal line and the vertical
line, so the lines meet there, and they're perpendicular.
Point-H is one corner of the rectangle.
J is another corner of the rectangle. It's 3 units below H.
K is another corner of the square. It's 4 units to the right of H.
The fourth corner is (2, -1) ... 4 to the right of J,
and 3 below K.
</span>
So,
Notice that there is a triangle with two of the angles given. We know that the sum of any triangle's angles will always be 180°. Thus, we can subtract the two given angles from 180, and that will give us the measure of angle ABC.
180 - 20 - 25 = 160 - 25 = 135
The measure of angle ABC is 135°.
The correct option is D.
Answer:
x = 10√3
Step-by-step explanation:
Because of the right angles, we can use Pythagoras
30² - x² = y² (a) Largest triangle
y² - 20² = h² (b) Medium triangle
substitute y² from (a) into (b)
30² - x² - 20² = h²
500 - x² = h² (d)
x² - h² = (30 - 20)² (c) smallest triangle
substitute h² from (d) into (c)
x² - (500 - x²) = 100
2x² = 600
x² = 300
x = 10√3
Answer: The value of x is 6.
Step-by-step explanation:
TO find the volume of a cube you cube any side length. so if the side length is 6.
6^3 = 216
To find the surface area of a cube you will square one of the side lengths and multiply it by 6.
so the side length is 6 and 6 squared is 36
36*6 = 216