1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin [286]
2 years ago
9

Ms. Miller decides gives a test worth 120 points and contains 36 questions. Multiple-choice questions are worth 3 points and ope

n-response questions are worth 5 points. How many of each type of question are there? ​
Mathematics
1 answer:
-Dominant- [34]2 years ago
8 0
#? 30-Multi Choice
3 points x 30 ?s = 90 points
#? 6- Open Response
5 points x 6?s = 30 points
You might be interested in
What is 548.6814 rounded to the nearest thousandth
tankabanditka [31]
5 486 814 rounded to the nearest  thousandth so here this is 6th digit:
because 7th digit is 4 we round down:
548.6814≈548,681
 
5 0
2 years ago
Read 2 more answers
I don’t understand I’m zooted
soldi70 [24.7K]

Answer:

me either

Step-by-step explanation:

3 0
2 years ago
The integer −282 could represent which three situations?A) owing $282B) depositing $282C) losing 282 pointsD) growing 282 feetE)
Shkiper50 [21]
A, C, and E
I think that it makes sense
7 0
2 years ago
Question regarding logarithms.
Eddi Din [679]

5^{x-2}-7^{x-3}=7^{x-5}+11\cdot5^{x-4}\\\\5^{x-2}-7^{x-2-1}=7^{x-2-3}+11\cdot5^{x-2-2}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\5^{x-2}-\dfrac{7^{x-2}}{7^1}=\dfrac{7^{x-2}}{7^3}+11\cdot\dfrac{5^{x-2}}{5^2}\\\\5^{x-2}-\dfrac{1}{7}\cdot7^{x-2}=\dfrac{1}{343}\cdot7^{x-2}+\dfrac{11}{25}\cdot5^{x-2}\\\\-\dfrac{1}{7}\cdot7^{x-2}-\dfrac{1}{343}\cdot7^{x-2}=\dfrac{11}{25}\cdot5^{x-2}-5^{x-2}\\\\\left(-\dfrac{1}{7}-\dfrac{1}{343}\right)\cdot7^{x-2}=\left(\dfrac{11}{25}-1\right)\cdot5^{x-2}

\left(-\dfrac{49}{343}-\dfrac{1}{343}\right)\cdot7^{x-2}=-\dfrac{14}{25}\cdot5^{x-2}\\\\-\dfrac{50}{343}\cdot7^{x-2}=-\dfrac{14}{25}\cdot5^{x-2}\qquad\text{multiply both sides by}\ \left(-\dfrac{25}{14}\right)\\\\\dfrac{50\cdot25}{343\cdot14}\cdot7^{x-2}=5^{x-2}\qquad\text{divide both sides by}\ 7^{x-2}\\\\\dfrac{25\cdot25}{343\cdot7}=\dfrac{5^{x-2}}{7^{x-2}}\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}

\dfrac{5^2\cdot5^2}{7^3\cdot7}=\left(\dfrac{5}{7}\right)^{x-2}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\\dfrac{5^4}{7^4}=\left(\dfrac{5}{7}\right)^{x-2}\\\\\left(\dfrac{5}{7}\right)^4=\left(\dfrac{5}{7}\right)^{x-2}\iff x-2=4\qquad\text{add 2 to both sides}\\\\\boxed{x=6}

6 0
3 years ago
Read 2 more answers
Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum. f(x,y)=4x2 2y2; 3x
nevsk [136]

For given f(x, y) the extremum: (12, 24) which is the minimum.

For given question,

We have been given a function f(x) = 4x² + 2y² under the constraint 3x+3y= 108

We use the constraint to build the constraint function,

g(x, y) = 3x + 3y

We then take all the partial derivatives which will be needed for the Lagrange multiplier equations:

f_x=8x

f_y=4y

g_x=3

g_y=3

Setting up the Lagrange multiplier equations:

f_x=\lambda g_x

⇒ 8x = 3λ                                        .....................(1)

f_y=\lambda g_y

⇒ 4y = 3λ                                         ......................(2)

constraint: 3x + 3y = 108                .......................(3)

Taking (1) / (2), (assuming λ ≠ 0)

⇒ 8x/4y = 1

⇒ 2x = y

Substitute this value of y in equation (3),

⇒ 3x + 3y = 108

⇒ 3x + 3(2x) = 108

⇒ 3x + 6x = 108

⇒ 9x = 108

⇒ x = 12

⇒ y = 2 × 12

⇒ y = 24

So, the saddle point (critical point) is (12, 24)

Now we find the value of f(12, 24)

⇒ f(12, 24) = 4(12)² + 2(24)²

⇒ f(12, 24) = 576 + 1152

⇒ f(12, 24) = 1728                             ................(1)

Consider point (18,18)

At this point the value of function f(x, y) is,

⇒ f(18, 18) = 4(18)² + 2(18)²

⇒ f(18, 18) = 1296 + 648

⇒ f(18, 18) = 1944                            ..............(2)

From (1) and (2),

1728 < 1944

This means, given extremum (12, 24) is minimum.

Therefore, for given f(x, y) the extremum: (12, 24) which is the minimum.

Learn more about the extremum here:

brainly.com/question/17227640

#SPJ4

6 0
1 year ago
Other questions:
  • What does "What scale would be appropriate to graph the data?" mean?
    14·1 answer
  • The probality of an event must be expressed as a percent
    15·2 answers
  • 18) You have 90 minutes to complete at least 18 chemistry and math problems. It takes 5 minutes to complete a chemistry problem
    8·2 answers
  • Help!!! I’m taking a test and it’s due in 5 minutes!!!!!!
    12·1 answer
  • Is -41 a whole number
    7·1 answer
  • Multiply and simplify : (4x -3)(-2x+1)​
    15·1 answer
  • Find the solution in slope-intercept form y+7=-3(x-1) and 3x+y=-4
    8·1 answer
  • In a recipe, 3 cups of fruit serves 5 people. How many cups of fruit would serve 100 people?
    6·2 answers
  • Someone help need this done right now I’ll mark u brainliest
    11·1 answer
  • Pls help and answer quick!! <br><br> find x
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!