Answer: LCM = 120
Step-by-step explanation:
First, "boxes of two sizes" means we can assign variables: Let x = number of large boxes y = number of small boxes "There are 115 boxes in all" means x + y = 115 [eq1] Now, the pounds for each kind of box is: (pounds per box)*(number of boxes) So, pounds for large boxes + pounds for small boxes = 4125 pounds "the truck is carrying a total of 4125 pounds in boxes" (50)*(x) + (25)*(y) = 4125 [eq2] It is important to find two equations so we can solve for two variables. Solve for one of the variables in eq1 then replace (substitute) the expression for that variable in eq2. Let's solve for x: x = 115 - y [from eq1] 50(115-y) + 25y = 4125 [from eq2] 5750 - 50y + 25y = 4125 [distribute] 5750 - 25y = 4125 -25y = -1625 y = 65 [divide both sides by (-25)] There are 65 small boxes. Put that value into either equation (now, which is easier?) to solve for x: x = 115 - y x = 115 - 65 x = 50 There are 50 large boxes.
Answer:
1. yes, both triangles sides are congruent
2. yes, they have congruent sides and they have a congruent angle
3. yes, congruent sides and angle
4. yes, 2 congruent angles
5. no, only one congruent angle not enough proof
6. yes, 2 congruent angles
7. no, only one congruent angle not enough proof
8. no, only one congruent side
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: 2
Explanation:
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer:
b. (1, 3, -2)
Step-by-step explanation:
A graphing calculator or scientific calculator can solve this system of equations for you, or you can use any of the usual methods: elimination, substitution, matrix methods, Cramer's rule.
It can also work well to try the offered choices in the given equations. Sometimes, it can work best to choose an equation other than the first one for this. The last equation here seems a good one for eliminating bad answers:
a: -1 -5(1) +2(-4) = -14 ≠ -18
b: 1 -5(3) +2(-2) = -18 . . . . potential choice
c: 3 -5(8) +2(1) = -35 ≠ -18
d: 2 -5(-3) +2(0) = 17 ≠ -18
This shows choice B as the only viable option. Further checking can be done to make sure that solution works in the other equations:
2(1) +(3) -3(-2) = 11 . . . . choice B works in equation 1
-(1) +2(3) +4(-2) = -3 . . . choice B works in equation 2