1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
2 years ago
14

YES I WILL GIVE BRAINLIST

Mathematics
1 answer:
Llana [10]2 years ago
5 0

Answer:

Question 1) Option C: 2(2x+1) = y, y = 2x + 8.

Question 4) Option C:  y = x + 4,  2y = 2x + 8

Step-by-step explanation:

<h2>Definitions:</h2><h3><u><em>Perpendicular Lines</em></u></h3>

The graph of perpendicular lines will show an intersection of two lines at a single point, forming 90° adjacent angles. Since perpendicular lines intersect <u><em>at exactly one point</em></u>, then it means that they will have one solution.  Additionally, perpendicular lines have <u><em>negative reciprocal slopes</em></u> for which multiplying the slopes of both lines result in a product of -1.

<h3><u><em>Coinciding Lines</em></u></h3>

Lines that have the same slope and y-intercept. Therefore, they are equivalent equations that will result in an infinitely many solutions. The graph of these lines will coincide on top of each other, as if they are the same line.  The systems of linear equations that result in an infinitely many solutions are dependent and consistent. They are <u>dependent</u> if they have an infinite number of solutions, and <u>consistent</u> because they have at least one solution.

<h3><u><em /></u></h3><h3><u><em>Parallel lines</em></u></h3>

<u>Parallel lines</u> have the same slope.  A systems of linear equations whose graph involve parallel lines have no solution, as there is no point of intersection between those two lines.  Therefore, parallel lines have no solution, making it an <u>inconsistent</u> system.

<h2>Question 1:</h2>

We must transform these equations in its slope-intercept form, y = mx + b, which will allow us to easily determine the type of lines a given system has based on their slopes.

<h3>Option A:</h3>

<u>Equation 1</u>:  2x + y = 10

<u>Equation 2</u>: y = −2x + 8

Transform Equation 1 to slope-intercept form:

2x + y = 10

Subtract 2x from both sides:

2x - 2x + y = - 2x + 10

y = -2x + 10  ⇒ This is the slope-intercept form of Equation 1.

Since Equations 1 and 2 have the same slope, but different y-intercepts, then it means that they are <u>parallel lines</u> that have no point of intersection.

<h3>Option B:</h3>

Transform both equations to slope-intercept form:

<u>Equation 1</u>:  2x + 4y = 10

                   \large\bf\sf{y\:=\:-\frac{1}{2}x\:+\:\frac{5}{2}}  ⇒ This is the slope-intercept form of Equation 1.

<u>Equation 2</u>:  2(x+2y) = 10

Distribute 2 into the parenthesis:

2(x+2y) = 10

2x + 4y = 10  ⇒ It is clear at this point that this equation matches Equation 1. Thus, the slope-intercept form of Equation 2 will be the same:

\large\bf\sf{y\:=\:-\frac{1}{2}x\:+\:\frac{5}{2}}  ⇒ Slope-intercept form of Equation 2.

It turns out that Equations 1 and 2 are equivalent, as they have exactly the same slope and y-intercept. Therefore, they have <u>coinciding lines</u> and have <u><em>infinitely many solutions</em></u>.

<h3>Option C:</h3>

Transform both equations to slope-intercept form:

<u>Equation 1</u>:  2(2x+1) = y

                    y = 4x + 2  ⇒ Slope-intercept form of Equation 1.

<u>Equation 2</u>:  y = 2x + 8  

<h3>Option D:</h3>

<u>Equation 1</u>: y = 10 − 2x

                    y = − 2x + 10  ⇒ This is the slope-intercept form of Equation 1.

<u>Equation 2</u>:  y = −2x + 7

Since Equations 1 and 2 have the same slope, but different y-intercept, then it means that they are <u><em>parallel</em></u> from each other.

<h3><u /></h3><h3><u>Answer for Question 1:</u></h3>

Out of all the given four options, Option C seems to be the correct answer, since the given system has varying slopes and y-intercept.  Therefore, the correct answer for <u>Question 1</u> is <em><u>Option C:</u></em>  2(2x+1) = y, y = 2x + 8.

<h2>Question 4:</h2>

For Question 4, I will not elaborate as thoroughly as in Question 1 since I'll be using the same techniques.

<h3>Option A)</h3>

<u>Equation 1:</u>  2x+ 7x + y = 6

Combine like terms:

2x+ 7x + y = 6

9x + y = 6

Subtract 9x from both sides:

9x - 9x + y = - 9x + 6

y = - 9x + 6 ⇒ Slope-intercept form of Equation 1.  

<u>Equation 2</u>: y = 9x + 6

Option A Explanation:

Equations 1 and 2 have different slopes and the same y-intercept. This implies that they will have a point of intersection = one solution. However, they don't have perpendicular lines because their slopes are not negative reciprocal of each other.  Hence, Option A is not a valid answer for  question 4.

<h3>Option B)</h3>

<u>Equation 1</u>:  y = 5x + 7

<u>Equation 2</u>:  y = 2x + 8

Option B explanation:

Similar to Option A, Equations 1 and 2 have different slopes and varying y-intercepts. Since they are not parallel from each other, and <u>do not have coinciding lines</u>, then Option B is not a valid answer for  question 4.

<h3>Option C)</h3>

<u>Equation 1</u>:  y = x + 4

<u>Equation 2</u>:  2y = 2x + 8

Transform Equation 2 to Slope-intercept form:

Divide both sides by 2 to isolate y:

\displaytext\mathsf{\frac{2y}{2}\:=\:\frac{2x\:+\:8}{2}}

y = x + 4  ⇒ This is the slope-intercept form of Equation 2.  

<u>Option C explanation: </u>

Equations 1 and 2 are equivalent, as they have exactly the same slope and y-intercept. They also have <u>coinciding lines,</u> having <u><em>infinitely many solutions</em></u>.  

<h3>Therefore, Option C is the correct answer for Question 4. </h3>

<h3>Option D)</h3>

<u>Equation 1</u>:  7x − y = 10

                    y = 7x - 10  ⇒ This is the slope-intercept form of Equation 1.

<u>Equation 2</u>:  y = 6x + 8

Option D explanation:

Similar to Option B, Equations 1 and 2 have different slopes and varying y-intercepts. Since they are not parallel from each other, and <u>do not have coinciding lines</u>, then Option D is not a valid answer for  question 4.

You might be interested in
Can someone good at math give me a hand I really need some w
dedylja [7]
What is the question that u need help with
5 0
3 years ago
A(R+T)=W solve for T
Leni [432]
A(R+T)=W
(A×R)+(A×T)=W
AR+AT=W
-AR from both sides
AT=W-AR
divide both sides by A
T=(W-AR)/A
6 0
3 years ago
I had $25 and i bought 3 boxes of granola bars. i can home with $4. how much does each box of granola bars cost?
Snezhnost [94]
$25 - $4 = $21
You spent $21 on 3 boxes of granola bars.

3 boxes = $21
1 box = $21 ÷ 3 = $7

One box of granola bar costs $7.
4 0
3 years ago
Read 2 more answers
You bike 11.2 miles in 1.4 hours at a steady rate what equation represents to proportional relationship between the X ours your
inna [77]

Please don't just copy and paste or click an answer! PLEASE READ! I spend 14 minutes and I at least want you to read it!

11.2 * 1.4 = 15.68

Mark me brainliest if you can!

3 0
3 years ago
A jar Contains 18 strawberry- 24cheery- and 19 lime-flavored candy the rest of the candies are chocolate there are 82 candies an
tresset_1 [31]

Answer:

61 + n = 82

Step-by-step explanation:

So the total number of candy is 82. This is the sum of each type of candy, i.e. 18 + 24 + 19 + n. So we have

18 + 24 + 19 + n = 82

61   +    n            = 82

( if we solve the equation we get n = 82 - 61 = 21)

Hope it helps and if it does please mark me brainliest;)

8 0
3 years ago
Other questions:
  • Square
    8·2 answers
  • Given an equilateral triangle, what kind of symmetry will the figure have: point, line, plane.
    5·1 answer
  • How do I solve this??
    9·2 answers
  • MATH PLEASE HELP <br> heeeeeeeelp​
    8·1 answer
  • What is the inverse operation of n/4.3=9.4
    11·1 answer
  • Find the volume of a sphere if its radius is 6 cm. Use estimation for pi.
    7·1 answer
  • If A and B are independent events, then it must be true that P(BIA) = P(A).
    5·1 answer
  • Skylar mowed 16 lawns in 12 hours. What was her rate of mowing in lawns per hour?
    10·1 answer
  • I need help ASAP plzz
    11·1 answer
  • In 1983, a hardcover dictionary cost $145.75. If the CPI is currently 209, what would a hardcover dictionary cost today? Round t
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!