1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
2 years ago
14

YES I WILL GIVE BRAINLIST

Mathematics
1 answer:
Llana [10]2 years ago
5 0

Answer:

Question 1) Option C: 2(2x+1) = y, y = 2x + 8.

Question 4) Option C:  y = x + 4,  2y = 2x + 8

Step-by-step explanation:

<h2>Definitions:</h2><h3><u><em>Perpendicular Lines</em></u></h3>

The graph of perpendicular lines will show an intersection of two lines at a single point, forming 90° adjacent angles. Since perpendicular lines intersect <u><em>at exactly one point</em></u>, then it means that they will have one solution.  Additionally, perpendicular lines have <u><em>negative reciprocal slopes</em></u> for which multiplying the slopes of both lines result in a product of -1.

<h3><u><em>Coinciding Lines</em></u></h3>

Lines that have the same slope and y-intercept. Therefore, they are equivalent equations that will result in an infinitely many solutions. The graph of these lines will coincide on top of each other, as if they are the same line.  The systems of linear equations that result in an infinitely many solutions are dependent and consistent. They are <u>dependent</u> if they have an infinite number of solutions, and <u>consistent</u> because they have at least one solution.

<h3><u><em /></u></h3><h3><u><em>Parallel lines</em></u></h3>

<u>Parallel lines</u> have the same slope.  A systems of linear equations whose graph involve parallel lines have no solution, as there is no point of intersection between those two lines.  Therefore, parallel lines have no solution, making it an <u>inconsistent</u> system.

<h2>Question 1:</h2>

We must transform these equations in its slope-intercept form, y = mx + b, which will allow us to easily determine the type of lines a given system has based on their slopes.

<h3>Option A:</h3>

<u>Equation 1</u>:  2x + y = 10

<u>Equation 2</u>: y = −2x + 8

Transform Equation 1 to slope-intercept form:

2x + y = 10

Subtract 2x from both sides:

2x - 2x + y = - 2x + 10

y = -2x + 10  ⇒ This is the slope-intercept form of Equation 1.

Since Equations 1 and 2 have the same slope, but different y-intercepts, then it means that they are <u>parallel lines</u> that have no point of intersection.

<h3>Option B:</h3>

Transform both equations to slope-intercept form:

<u>Equation 1</u>:  2x + 4y = 10

                   \large\bf\sf{y\:=\:-\frac{1}{2}x\:+\:\frac{5}{2}}  ⇒ This is the slope-intercept form of Equation 1.

<u>Equation 2</u>:  2(x+2y) = 10

Distribute 2 into the parenthesis:

2(x+2y) = 10

2x + 4y = 10  ⇒ It is clear at this point that this equation matches Equation 1. Thus, the slope-intercept form of Equation 2 will be the same:

\large\bf\sf{y\:=\:-\frac{1}{2}x\:+\:\frac{5}{2}}  ⇒ Slope-intercept form of Equation 2.

It turns out that Equations 1 and 2 are equivalent, as they have exactly the same slope and y-intercept. Therefore, they have <u>coinciding lines</u> and have <u><em>infinitely many solutions</em></u>.

<h3>Option C:</h3>

Transform both equations to slope-intercept form:

<u>Equation 1</u>:  2(2x+1) = y

                    y = 4x + 2  ⇒ Slope-intercept form of Equation 1.

<u>Equation 2</u>:  y = 2x + 8  

<h3>Option D:</h3>

<u>Equation 1</u>: y = 10 − 2x

                    y = − 2x + 10  ⇒ This is the slope-intercept form of Equation 1.

<u>Equation 2</u>:  y = −2x + 7

Since Equations 1 and 2 have the same slope, but different y-intercept, then it means that they are <u><em>parallel</em></u> from each other.

<h3><u /></h3><h3><u>Answer for Question 1:</u></h3>

Out of all the given four options, Option C seems to be the correct answer, since the given system has varying slopes and y-intercept.  Therefore, the correct answer for <u>Question 1</u> is <em><u>Option C:</u></em>  2(2x+1) = y, y = 2x + 8.

<h2>Question 4:</h2>

For Question 4, I will not elaborate as thoroughly as in Question 1 since I'll be using the same techniques.

<h3>Option A)</h3>

<u>Equation 1:</u>  2x+ 7x + y = 6

Combine like terms:

2x+ 7x + y = 6

9x + y = 6

Subtract 9x from both sides:

9x - 9x + y = - 9x + 6

y = - 9x + 6 ⇒ Slope-intercept form of Equation 1.  

<u>Equation 2</u>: y = 9x + 6

Option A Explanation:

Equations 1 and 2 have different slopes and the same y-intercept. This implies that they will have a point of intersection = one solution. However, they don't have perpendicular lines because their slopes are not negative reciprocal of each other.  Hence, Option A is not a valid answer for  question 4.

<h3>Option B)</h3>

<u>Equation 1</u>:  y = 5x + 7

<u>Equation 2</u>:  y = 2x + 8

Option B explanation:

Similar to Option A, Equations 1 and 2 have different slopes and varying y-intercepts. Since they are not parallel from each other, and <u>do not have coinciding lines</u>, then Option B is not a valid answer for  question 4.

<h3>Option C)</h3>

<u>Equation 1</u>:  y = x + 4

<u>Equation 2</u>:  2y = 2x + 8

Transform Equation 2 to Slope-intercept form:

Divide both sides by 2 to isolate y:

\displaytext\mathsf{\frac{2y}{2}\:=\:\frac{2x\:+\:8}{2}}

y = x + 4  ⇒ This is the slope-intercept form of Equation 2.  

<u>Option C explanation: </u>

Equations 1 and 2 are equivalent, as they have exactly the same slope and y-intercept. They also have <u>coinciding lines,</u> having <u><em>infinitely many solutions</em></u>.  

<h3>Therefore, Option C is the correct answer for Question 4. </h3>

<h3>Option D)</h3>

<u>Equation 1</u>:  7x − y = 10

                    y = 7x - 10  ⇒ This is the slope-intercept form of Equation 1.

<u>Equation 2</u>:  y = 6x + 8

Option D explanation:

Similar to Option B, Equations 1 and 2 have different slopes and varying y-intercepts. Since they are not parallel from each other, and <u>do not have coinciding lines</u>, then Option D is not a valid answer for  question 4.

You might be interested in
Find the exact value of sin (arccos (3/5)). For full credit, explain your reasoning.
zloy xaker [14]
The equation for cosine is <span><span><span>cos<span>(x)</span></span>=<span>Adjacent/Hypotenuse
</span></span></span>The inside trig function is <span><span>arccos<span>(<span>3/5</span>)</span></span></span>, which means <span><span><span>cos<span>(x)</span></span>=<span>3/5</span></span></span>. Comparing <span><span><span>cos<span>(x)</span></span>=<span>Adjacent/Hypotenuse</span></span></span> with <span><span><span>cos<span>(x)</span></span>=<span>3/5
</span></span></span>
Find <span><span>Adjacent=3</span></span> and <span><span>Hypotenuse=5.
</span></span>Then, using the Pythagorean theorem, find <span><span>Opposite=?
</span></span>a² = c² - b²
a² = 5² - 3² = 25 - 9 = 16
a = √16 = 4

<span><span>Adjacent=3</span></span><span><span>Opposite=4</span></span><span><span>Hypotenuse=5
</span></span><span>
Plug in the value for sin(x) = opposite/hypotenuse

sin(x) = 4/5 </span>
6 0
3 years ago
2. Find the perimeter of a rectangle of<br> Length 13m with an area of 65m
I am Lyosha [343]

Answer:

Perimeter = 36m

Step-by-step explanation:

Area = l x w

65m = 13m x w

5m = w

Perimeter = 2(l + w)

Perimeter = 2(13m + 5m)

Perimeter = 36m

3 0
3 years ago
Read 2 more answers
Bobcat park is a rectangular park with an area of 5 1/5 square miles.Its width is 1 19/20 miles. How long is the park
mel-nik [20]

area = length times width, so length = area / width

5 1/5 mi^2 5.2 mi^2

Here, length = ------------------- = --------------- = 2.66666... mi = 2 2/3 mi (answer)

1 19/20 mi 1.95 mi

4 0
3 years ago
HELPPPP PLEASEE. IT IS DUE IN 20 MIN. THANK YOU SO MUCH! :)
12345 [234]

Answer:

A.) 65x + 35X + 50 = 250

65x = cost of concrete per cubic yard, x is yd³

35X = cost of pouring/finishing concrete per cubic yard, X is yd³

50 = delivery cost

250 = the money you have

B.) 400 + 15n = 505

15n = amount of money you deposite per week, n is # of week

400 = some money in account after n week passed

505 = initial money in bank

C.) 1.1X - 10 = 55

55 = total cost of clothes

1.1X = tax rate where X is the undiscounted clothe cost

10 = discount

3 0
3 years ago
Carla had a piece of rope that was 14 7/8 inches long. She used some of the rope for a crafts project. Now there is 14 3/8 in. L
MrRissso [65]

Answer:

4/8, 1/2

Step-by-step explanation:

7/8 - 3/8 = 4/8

4/8 >>> divide both by 4

4 divided by 4 = 1

8 divided by 4= 2

1/2 Inches

6 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the constant of variation if y varies directly as x. y = -3 x = 2
    12·2 answers
  • (a) Find all points where the function f(z) = (x^2+y^2-2y)+i(2x-2xy) is differentiable, and compute the derivative at those poin
    12·1 answer
  • PLEASE HELP!!! you work a part-time job earning 6.80/hr with tips that average 2.30/hr you work 20 hr/wk and your deductions are
    10·1 answer
  • What number would you have to add to both sides to complete the square?
    5·2 answers
  • Joanna has a board that is 6ft long. she cuts it into pieces that are each 1/4 foot long. write an equation to represent the num
    7·2 answers
  • Find perimeter and area of given plane figure​
    10·1 answer
  • What is the y- intercept of the given graph​
    15·1 answer
  • A circle is placed in a square with a side length of 10 mm, as shown below. Find the area of the shaded region.
    10·1 answer
  • Joe spins a spinner with a 1, 2, 3, and 4. He also flips a coin with heads and tails. what is the probability of Joe spinning a
    8·1 answer
  • You pick a card, roll a die, and find the sum. How many different sums are possible?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!