Answer:
You have to give us the other expressions :)
Step-by-step explanation:
Just multiply the top number by the top number and the bottom numbers by the bottom numbers so
2/4 times 1/3=(2 times 1)/(4 times 3)=2/12
so to simplify, we find the ones exg 4/8=1/2 because 1/2 times 4/4=4/8 and 4/4 cancels out so
2/12=2/2 times 1/6
=1/6
Answer:
It is a solution
Step-by-step explanation:
y = -4x - 8
Let x = -9 and y = 28
Substitute these values in
28 = -4(-9) -8
28 = 36 -8
28 =28
This is true so it is a solution
Answer:
![A^{-1}=\left[ \begin{array}{ccc} \frac{1}{9} & \frac{4}{27} & - \frac{2}{27} \\\\ \frac{8}{9} & \frac{5}{27} & \frac{11}{27} \\\\ - \frac{4}{9} & \frac{2}{27} & - \frac{1}{27} \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B1%7D%7B9%7D%20%26%20%5Cfrac%7B4%7D%7B27%7D%20%26%20-%20%5Cfrac%7B2%7D%7B27%7D%20%5C%5C%5C%5C%20%5Cfrac%7B8%7D%7B9%7D%20%26%20%5Cfrac%7B5%7D%7B27%7D%20%26%20%5Cfrac%7B11%7D%7B27%7D%20%5C%5C%5C%5C%20-%20%5Cfrac%7B4%7D%7B9%7D%20%26%20%5Cfrac%7B2%7D%7B27%7D%20%26%20-%20%5Cfrac%7B1%7D%7B27%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step-by-step explanation:
We want to find the inverse of ![A=\left[ \begin{array}{ccc} 1 & 0 & -2 \\\\ 4 & 1 & 3 \\\\ -4 & 2 & 3 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7D%201%20%26%200%20%26%20-2%20%5C%5C%5C%5C%204%20%26%201%20%26%203%20%5C%5C%5C%5C%20-4%20%26%202%20%26%203%20%5Cend%7Barray%7D%20%5Cright%5D)
To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.
So, augment the matrix with identity matrix:
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 4&1&3&0&1&0 \\\\ -4&2&3&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%204%261%263%260%261%260%20%5C%5C%5C%5C%20-4%262%263%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 multiplied by 4 from row 2
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ -4&2&3&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%20-4%262%263%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Add row 1 multiplied by 4 to row 3
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&2&-5&4&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%262%26-5%264%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 2 from row 3
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&0&-27&12&-2&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%260%26-27%2612%26-2%261%5Cend%7Barray%7D%5Cright%5D)
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%260%261%26-%20%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B2%7D%7B27%7D%26-%20%5Cfrac%7B1%7D%7B27%7D%5Cend%7Barray%7D%5Cright%5D)
- Add row 3 multiplied by 2 to row 1
![\left[ \begin{array}{ccc|ccc}1&0&0&\frac{1}{9}&\frac{4}{27}&- \frac{2}{27} \\\\ 0&1&11&-4&1&0 \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%260%26%5Cfrac%7B1%7D%7B9%7D%26%5Cfrac%7B4%7D%7B27%7D%26-%20%5Cfrac%7B2%7D%7B27%7D%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%260%261%26-%20%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B2%7D%7B27%7D%26-%20%5Cfrac%7B1%7D%7B27%7D%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 3 multiplied by 11 from row 2
![\left[ \begin{array}{ccc|ccc}1&0&0&\frac{1}{9}&\frac{4}{27}&- \frac{2}{27} \\\\ 0&1&0&\frac{8}{9}&\frac{5}{27}&\frac{11}{27} \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%260%26%5Cfrac%7B1%7D%7B9%7D%26%5Cfrac%7B4%7D%7B27%7D%26-%20%5Cfrac%7B2%7D%7B27%7D%20%5C%5C%5C%5C%200%261%260%26%5Cfrac%7B8%7D%7B9%7D%26%5Cfrac%7B5%7D%7B27%7D%26%5Cfrac%7B11%7D%7B27%7D%20%5C%5C%5C%5C%200%260%261%26-%20%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B2%7D%7B27%7D%26-%20%5Cfrac%7B1%7D%7B27%7D%5Cend%7Barray%7D%5Cright%5D)
As can be seen, we have obtained the identity matrix to the left. So, we are done.
X-y=2 (*-2) --> -2x+2y=-4
2x+3y=14
------------------
2x+3y=14
-2x+2y=-4
------------------
5y=10
y=2