1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
9

Help or the gremlins under your bed will eat all your cookies

Mathematics
1 answer:
Alex73 [517]3 years ago
3 0

Answer:

what do you need help with exactly

Step-by-step explanation:

You might be interested in
Find mQ for the triangle
olga55 [171]
You can do it again when I get home from
6 0
3 years ago
You roll a six-sided number cube. What is
givi [52]

Answer: 1, 2, 3, 4, 5, 6

p greater than 2 = 4/6 = 2/3

p 2 or smaller and prime = 2/6 = 1/3

2/3 + 1/3 = 1

every single side of the cube is either greater than 2 or prime (two and one) so you simply will get the desired result in 100% of your rolls

7 0
4 years ago
Read 2 more answers
Simplify by combining like terms 5 4/7i+4 3/5i
Arturiano [62]
Simplify by combining the real and imaginary parts of each expression

Answer: 356i/35
7 0
3 years ago
Find the product. (-10) • (-10) • (-10)
swat32

Answer:

-1000

Step-by-step explanation:

-10 times -10 makes 100 as negative cancel each other

100 times -10 make -1000

8 0
4 years ago
Read 2 more answers
Simplify completely <br> (X^2+x-12/x^2-x-20)/(3x^2–24x+45/12x^2-48-60)
Rudik [331]

Answer:

(4 (x^4 - 20 x^2 - 12))/(3 x^2 (9 x^2 - 32 x - 144))

Step-by-step explanation:

Simplify the following:

(x^2 + x - x - 20 - 12/x^2)/((15 x^2)/4 + 3 x^2 - 24 x - 60 - 48)

Hint: | Put the fractions in x^2 + x - x - 20 - 12/x^2 over a common denominator.

Put each term in x^2 + x - x - 20 - 12/x^2 over the common denominator x^2: x^2 + x - x - 20 - 12/x^2 = x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2:

(x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2)/((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48)

Hint: | Combine x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2 into a single fraction.

x^4/x^2 + x^3/x^2 - x^3/x^2 - (20 x^2)/x^2 - 12/x^2 = (x^4 + x^3 - x^3 - 20 x^2 - 12)/x^2:

((x^4 + x^3 - x^3 - 20 x^2 - 12)/x^2)/((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48)

Hint: | Group like terms in x^4 + x^3 - x^3 - 20 x^2 - 12.

Grouping like terms, x^4 + x^3 - x^3 - 20 x^2 - 12 = x^4 - 20 x^2 - 12 + (x^3 - x^3):

(x^4 - 20 x^2 - 12 + (x^3 - x^3))/(x^2 ((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48))

Hint: | Look for the difference of two identical terms.

x^3 - x^3 = 0:

((x^4 - 20 x^2 - 12)/x^2)/((45 x^2)/12 + 3 x^2 - 24 x - 60 - 48)

Hint: | In (45 x^2)/12, the numbers 45 in the numerator and 12 in the denominator have gcd greater than one.

The gcd of 45 and 12 is 3, so (45 x^2)/12 = ((3×15) x^2)/(3×4) = 3/3×(15 x^2)/4 = (15 x^2)/4:

(x^4 - 20 x^2 - 12)/(x^2 (15 x^2/4 + 3 x^2 - 24 x - 60 - 48))

Hint: | Put the fractions in (15 x^2)/4 + 3 x^2 - 24 x - 60 - 48 over a common denominator.

Put each term in (15 x^2)/4 + 3 x^2 - 24 x - 60 - 48 over the common denominator 4: (15 x^2)/4 + 3 x^2 - 24 x - 60 - 48 = (15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4:

(x^4 - 20 x^2 - 12)/(x^2 (15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4)

Hint: | Combine (15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4 into a single fraction.

(15 x^2)/4 + (12 x^2)/4 - (96 x)/4 - 240/4 - 192/4 = (15 x^2 + 12 x^2 - 96 x - 240 - 192)/4:

(x^4 - 20 x^2 - 12)/(x^2 (15 x^2 + 12 x^2 - 96 x - 240 - 192)/4)

Hint: | Group like terms in 15 x^2 + 12 x^2 - 96 x - 240 - 192.

Grouping like terms, 15 x^2 + 12 x^2 - 96 x - 240 - 192 = (12 x^2 + 15 x^2) - 96 x + (-192 - 240):

(x^4 - 20 x^2 - 12)/(x^2 ((12 x^2 + 15 x^2) - 96 x + (-192 - 240))/4)

Hint: | Add like terms in 12 x^2 + 15 x^2.

12 x^2 + 15 x^2 = 27 x^2:

(x^4 - 20 x^2 - 12)/(x^2 (27 x^2 - 96 x + (-192 - 240))/4)

Hint: | Evaluate -192 - 240.

-192 - 240 = -432:

(x^4 - 20 x^2 - 12)/(x^2 (27 x^2 - 96 x + -432)/4)

Hint: | Factor out the greatest common divisor of the coefficients of 27 x^2 - 96 x - 432.

Factor 3 out of 27 x^2 - 96 x - 432:

(x^4 - 20 x^2 - 12)/(x^2 (3 (9 x^2 - 32 x - 144))/4)

Hint: | Write ((x^4 - 20 x^2 - 12)/x^2)/((3 (9 x^2 - 32 x - 144))/4) as a single fraction.

Multiply the numerator by the reciprocal of the denominator, ((x^4 - 20 x^2 - 12)/x^2)/((3 (9 x^2 - 32 x - 144))/4) = (x^4 - 20 x^2 - 12)/x^2×4/(3 (9 x^2 - 32 x - 144)):

Answer: (4 (x^4 - 20 x^2 - 12))/(3 x^2 (9 x^2 - 32 x - 144))

3 0
3 years ago
Other questions:
  • Is (pie-22/7) a rational,irrational or zero?
    15·1 answer
  • Domain of f(t)=(t+4)^1/3
    12·1 answer
  • What are the domain and range of the function f(x)=sqrt(x-7) +9
    6·2 answers
  • 7c+5(c-d)-d =<br><br>a. 6(2c-d)<br>b.12c<br>c.4(3c+d)<br>d.2(6c-5d)<br>e.2(6c-d)
    12·1 answer
  • A juice shop needed 360 oranges to make 40 L of fresh-squeezed juice.
    13·1 answer
  • What is the value of X?
    15·2 answers
  • A, B, and C are collinear, and B is in between A and C. The ratio of AB to AC is 1:3. If A is at (2, -6) and B is at (3, -1), wh
    15·1 answer
  • One angle measures 30 degrees and another measures 60 degrees.
    15·2 answers
  • Are the expressions 8a - 3b - (2a + 4b) and 6a + b equivalent?
    11·1 answer
  • Tell whether the value is a solution of the inequality.-15 &gt; -3q+ 3q= -3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!