Answer: Identify which of the following functions are eigenfunctions of the operator d/dx: (a) eikx, (b) cos kx, (c) k, (d) kx, (e) e−ax2
Step-by-step explanation: First, we going to apply the operator derivate to each item. Remember that a function f is an eigenfunction of D if it satisfies the equation
Df=λf, where λ is a scalar.
a) D(eikx)/dx= ik*eikx, then the function is a eigenfunction and the eingenvalue is ik.
b) D(cos kx)/dx= -ksen kx, then the funcion is not a eigenfunction.
c) D(k)/dx=0, then the funcion is not a eigenfunction.
d) D(kx)/dx=k, then the funcion is not a eigenfunction.
e) D(e-ax2)/dx= -2ax*e-ax2, then the function is a eigenfunction and the eingenvalue is -2ax
Answer:
x = 432
Step-by-step explanation:
72 / x = 16 2/3 / 100
7200= 16 2/3x
7200 / 16 2/3 = 432
16 2/3x / 16 2/3 = x
Answer:
20-x; -20+x; -20-x; 20+x
Step-by-step explanation:
|14-x+6|
|20-x|
20-x; -20+x; -20-x; 20+x
Answer:
20.18
Step-by-step explanation:
Greatest number= 35.18
Least number=15
Difference between the twain=20.18
Simplified :(5x+4y)(5x−4y)
=(5x+4y)(5x+−4y)
=(5x)(5x)+(5x)(−4y)+(4y)(5x)+(4y)(−4y)
=25x2−20xy+20xy−16y2
=25x2−16y2
hope this helps!