We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³
Answer:
the answer for this questions is A) D) E)
Formula for Perimeter of Rectangle:
P = 2(L + W)
Plug in 160:
160 = 2(L + W)
L = 4W
<span>So we can plug in '4W' for 'L' in the first equation.</span>
<span>160 = 2(L + W)
160 = 2(4W + W)
Combine like terms:
160 = 2(5W)
160 = 10W
Divide 10 to both sides:
W = 16
Now we can plug this back into any of the two equations to find the length.
L = 4W
L = 4(16)
L = 64
So the width is 16, and the length is 64.</span>
Answer:
The 90 % confidence interval for the mean population is (11.176 ; 20.824 )
Rounding to at least two decimal places would give 11.18 , 20.83
Step-by-step explanation:
Mean = x`= 16 miles per hour
standard deviation =s= 4.1 miles per hour
n= 4
= 4.1/√4= 4.1/2= 2.05
1-α= 0.9
degrees of freedom =n-1= df= 3
∈ ( estimator t with 90 % and df= 3 from t - table ) 2.353
Using Students' t - test
x`±∈ * 
Putting values
16 ± 2.353 * 2.05
= 16 + 4.82365
20.824 ; 11.176
The 90 % confidence interval for the mean population is (11.176 ; 20.824 )
Rounding to at least two decimal places would give 11.18 , 20.83
Answer:
I believe the answer to this question is: 100.