Answer:
Central Processing Unit
Explanation:
Principle part of any digital computer system
Answer:
System of linear equations is solved below and explained in detail.
Explanation:
Part a:
M = [1 3 5 2; 2 -4 7 -3; 0 -4 -7 3; 5 -3 2 1];
c = [7; -3; -1; 0];
Part b:
The statement used for the solution of system of linear equation will be:
X = linsolve(M,c)
where X will give the values of x1, x2, x3, x4 respectively.
Part c:
The system is solved in matlab using above equation and the results are attached in a file.
The values for X are:
x1 = -2/7
x2 = 3/7
x3 = 4/7
x4 = 11/7
The answer to your question is D
Answer:
public class MagicSquare {
public static void main(String[] args) {
int[][] square = {
{ 8, 11, 14, 1},
{13, 2, 7,12},
{ 3, 16, 9, 6},
{10, 5, 4, 15}
};
System.out.printf("The square %s a magic square. %n",
(isMagicSquare(square) ? "is" : "is not"));
}
public static boolean isMagicSquare(int[][] square) {
if(square.length != square[0].length) {
return false;
}
int sum = 0;
for(int i = 0; i < square[0].length; ++i) {
sum += square[0][i];
}
int d1 = 0, d2 = 0;
for(int i = 0; i < square.length; ++i) {
int row_sum = 0;
int col_sum = 0;
for(int j = 0; j < square[0].length; ++j) {
if(i == j) {
d1 += square[i][j];
}
if(j == square.length-i-1) {
d2 += square[i][j];
}
row_sum += square[i][j];
col_sum += square[j][i];
}
if(row_sum != sum || col_sum != sum) {
return false;
}
}
return d1 == sum && d2 == sum;
}
}