<em>Question:</em>
<em>Triangles PQR and RST are similar right triangles. Which proportion can be used to show that the slope of PR is equal to the slope of RT?</em>
Answer:

Step-by-step explanation:
See attachment for complete question
From the attachment, we have that:





First, we need to calculate the slope (m) of PQR
Here, we consider P and R

Where


becomes
--------- (1)
Next, we calculate the slope (m) of RST
Here, we consider R and T

Where


becomes
---------- (2)
Next, we equate (1) and (2)

<em>From the list of given options (see attachment), option A answers the question</em>
Answer:
16.35Rs would be paid by everyone.
Step-by-step explanation:
98.10/6
=16.35Rs would be paid by everyone.
Hope it will help you :)
Answer:
True
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (- 4, - 9), thus
y = a(x + 4)² - 9
To find a substitute the coordinates of the zero (- 7, 0) into the equation.
0 = a(- 7 + 4)² - 9, that is
0 = 9a - 9 ( add 9 to both sides )
9a = 9 ( divide both sides by 9 )
a = 1, thus
y = (x + 4)² - 9 ← expand factor using FOIL
y = x² + 8x + 16 - 9
y = x² + 8x + 7
Answer:
<h3>its so hard im sorry i can't answer it</h3>
Answer:

Step-by-step explanation:
Hello,
a and b are the zeros, we can say that

So we can say that

Now, we are looking for a polynomial where zeros are 2a+3b and 3a+2b
for instance we can write

and we can notice that
so
![(x-2a-3b)(x-3a-2b)=x^2-5(a+b)x+6[(a+b)2-2ab]+13ab\\= x^2-5(a+b)x+6(a+b)^2+ab](https://tex.z-dn.net/?f=%28x-2a-3b%29%28x-3a-2b%29%3Dx%5E2-5%28a%2Bb%29x%2B6%5B%28a%2Bb%292-2ab%5D%2B13ab%5C%5C%3D%20x%5E2-5%28a%2Bb%29x%2B6%28a%2Bb%29%5E2%2Bab)
it comes

multiply by 3
