1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
7

How much simple interest would $1,500 earn in 11 months at an interest rate of 3.75%

Mathematics
2 answers:
Shtirlitz [24]3 years ago
8 0
The answer is 618.75
Hope it helped
FinnZ [79.3K]3 years ago
3 0
1500.*3.75%= 56.25*11= 618.75
You might be interested in
Xis all of the following except
bixtya [17]

Answer:

a variable

Step-by-step explanation:

a variable.

5 0
3 years ago
Read 2 more answers
One kitten weighs 2 lbs 4 oz. Another kitten weighs 2 oz less. What is the combined weight of the two kittens in oz?
EastWind [94]

Answer:

70 oz

Step-by-step explanation:

You know that one kitten weighs 2 lbs 4 oz. and the other ways 2 lbs 2 oz all you need to do is add that together to get 4 lbs 6 oz then convert that into lbs (1 lbs = 16 oz)

In total the 4 lbs gets you 64 oz, then you just need to add the 6 remaining oz to get 70 lbs!

6 0
3 years ago
Read 2 more answers
Wats the answer ~!!!!!!!
shtirl [24]
The answer is c. My dude good luck
6 0
3 years ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
3 years ago
Can someone help me out please
alexgriva [62]
Honestly, I have no idea what it means by decomposition, but this is my best bet on what it means: Dividing the polygon into smaller, easier sections and solve for area and add them up.

6 0
3 years ago
Other questions:
  • Which of the following requires a proof?
    8·1 answer
  • Find the equation of the line specified.<br> The slope is 6, and it passes through ( -4, 4).
    12·1 answer
  • PLEASE someone do this math EASY picture attached
    7·2 answers
  • 6. How many odd positive integers less than 300 can be written using<br> the numbers 2, 4, 5, and 8?
    15·1 answer
  • -1/6+2/3 (9-3/4)-1/2 can anyone please solve this?
    6·1 answer
  • Which statements describe analogous structures? Check all that apply.
    8·2 answers
  • What is the value of x in the figure below
    15·1 answer
  • The solution to -16 + x = -30 is -14.<br><br><br> True False
    15·2 answers
  • Solve each triangle for x.
    8·1 answer
  • Solve.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!