Answer:
708.496×1
2×354.248
177.124
×4
Step-by-step explanation:
Here are 3 ways.
You would divide 708.496 with some numbers and you have different ways.
Hope this helped!
Answer:
The sum of the first 37 terms of the arithmetic sequence is 2997.
Step-by-step explanation:
Arithmetic sequence concepts:
The general rule of an arithmetic sequence is the following:

In which d is the common diference between each term.
We can expand the general equation to find the nth term from the first, by the following equation:

The sum of the first n terms of an arithmetic sequence is given by:

In this question:

We want the sum of the first 37 terms, so we have to find 




Then

The sum of the first 37 terms of the arithmetic sequence is 2997.
Answer:
1. 9 < s < 17
2. 5 < MN < 19
3. AD > BD
Step-by-step explanation:
1. The triangle inequality tells you the sum of any two sides of a triangle must exceed the length of the other side. (Some versions say, "must be not less than ..." rather than "must exceed.") In practice, this means two things:
- the sum of the shortest two sides is greater than the length of the longest side
- the length of any side lies between the sum and the difference of the other two sides
Here, we can use the latter fact to write the desired inequality. The difference of the given sides is 13 -4 = 9; their sum is 13 +4 = 17. The third side must lie between 9 and 17. If that side length is designated "s", then ...
9 < s < 17
(If you don't mind a "triangle" that looks like a line segment, you can use ≤ instead of <.)
__
2. Same as (1) using different numbers.
12 -7 < MN < 12 +7
5 < MN < 19
__
3. Side CD is congruent to itself, and side CA is shown congruent to side CB. This means the requirements of the Hinge Theorem are met. That theorem tells you the longer side is opposite the greater angle:
AD > BD
Given:
AD is diameter of the circle, AB is the tangent, and measure of arc ADC is 228 degrees.
To find:
The
and
.
Solution:
AD is diameter of the circle. So, the measure of arc AD is 180 degrees.




The measure inscribed angle is half of the corresponding subtended arc.



AB is the tangent. So,
because radius is perpendicular on the tangent and the point of tangency.




Therefore,
and
.