Answer:
The cosine function to model the height of a water particle above and below the mean water line is h = 2·cos((π/30)·t)
Step-by-step explanation:
The cosine function equation is given as follows h = d + a·cos(b(x - c))
Where:
= Amplitude
2·π/b = The period
c = The phase shift
d = The vertical shift
h = Height of the function
x = The time duration of motion of the wave, t
The given data are;
The amplitude
= 2 feet
Time for the wave to pass the dock
The number of times the wave passes a point in each cycle = 2 times
Therefore;
The time for each complete cycle = 2 × 30 seconds = 60 seconds
The time for each complete cycle = Period = 2·π/b = 60
b = π/30 =
Taking the phase shift as zero, (moving wave) and the vertical shift as zero (movement about the mean water line), we have
h = 0 + 2·cos(π/30(t - 0)) = 2·cos((π/30)·t)
The cosine function is h = 2·cos((π/30)·t).
Answer:
√14 and √42. hope this helps.
Answer:
Step-by-step explanation:
We know that when there is an absolute value sign, the value inside the bars is always positive.
- => I3x + 3I = 10
- => 3x + 3 = 10
- => 3x = 10 - 3
- => 3x = 7
- => x = 7/3
- => x = 2.33 (Rounded to nearest hundredth)
Hence, the value of x is 2.33.
Answer:
Se=1.2
Step-by-step explanation:
The standard error is the standard deviation of a sample population. "It measures the accuracy with which a sample represents a population".
The central limit theorem (CLT) states "that the distribution of sample means approximates a normal distribution, as the sample size becomes larger, assuming that all samples are identical in size, and regardless of the population distribution shape"
The sample mean is defined as:

And the distribution for the sample mean is given by:

Let X denotes the random variable that measures the particular characteristic of interest. Let, X1, X2, …, Xn be the values of the random variable for the n units of the sample.
As the sample size is large,(>30) it can be assumed that the distribution is normal. The standard error of the sample mean X bar is given by:

If we replace the values given we have:

So then the distribution for the sample mean
is:

The nth term of the geometric sequence is:
an=ar^(n-1)
where
a=first term
r=common ratio
n=nth term
from the question:
120=ar(3-1)
120=ar^2
a=120/(r^2)....i
also:
76.8=ar^(5-1)
76.8=ar^4
a=76.8/r^4.....i
thus from i and ii
120/r^2=76.8/r^4
from above we can have:
120=76.8/r²
120r²=76.8
r²=76.8/120
r²=0.64
r=√0.64
r=0.8
hence:
a=120/(0.64)=187.5
therefore the formula for the series will be:
an=187.5r^0.8