Answi do not understand your question
Step-by-step explanation:
Answer:
i can't answer this but i can tell you this
The general form of an absolute value function is f(x)=a|x-h|+k. From this form, we can draw graphs.
y = a(x – h)2 + k, where (h, k) is the vertex. ... In the vertex form of the quadratic, the fact that (h, k) is the vertex makes sense if you think about it for a minute, and it's because the quantity "x – h" is squared, so its value is always zero or greater; being squared, it can never be negative.
Step-by-step explanation:
it is not the answer but i hope it helps:)
You have to multiply by a -1 both sides,
it would be 10 1/2
Answer:
a) P(Y > 76) = 0.0122
b) i) P(both of them will be more than 76 inches tall) = 0.00015
ii) P(Y > 76) = 0.0007
Step-by-step explanation:
Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
To find - (a) If a man is chosen at random from the population, find
the probability that he will be more than 76 inches tall.
(b) If two men are chosen at random from the population, find
the probability that
(i) both of them will be more than 76 inches tall;
(ii) their mean height will be more than 76 inches.
Proof -
a)
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
) >
)
= P(Z >
)
= P(Z >
)
= P(Z > 2.25)
= 1 - P(Z ≤ 2.25)
= 0.0122
⇒P(Y > 76) = 0.0122
b)
(i)
P(both of them will be more than 76 inches tall) = (0.0122)²
= 0.00015
⇒P(both of them will be more than 76 inches tall) = 0.00015
(ii)
Given that,
Mean = 69.7,
= 1.979899,
Now,
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
)) >
)
= P(Z >
)
= P(Z >
))
= P(Z > 3.182)
= 1 - P(Z ≤ 3.182)
= 0.0007
⇒P(Y > 76) = 0.0007
Answer: The answer is 
Step-by-step explanation: Given in the question that ΔAM is a right-angled triangle, where ∠C = 90°, CP ⊥ AM, AC : CM = 3 : 4 and MP - AP = 1. We are to find AM.
Let, AC = 3x and CM = 4x.
In the right-angled triangle ACM, we have

Now,

Now, since CP ⊥ AM, so ΔACP and ΔMCP are both right-angled triangles.
So,

Comparing equations (A) and (B), we have

Thus,
