Answer:

Step-by-step explanation:
The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution". The probability density function is given by:

And 0 for other case. Let X the random variable that represent "The number of years a radio functions" and we know that the distribution is given by:

We can assume that the random variable t represent the number of years that the radio is already here. So the interest is find this probability:

We have an important property on the exponential distribution called "Memoryless" property and says this:

Where a represent a shift and t the time of interest.
On this case then 
We can use the definition of the density function and find this probability:


![=[lim_{x\to\infty} (-e^{-\frac{1}{8}x})+e^{-1}]=0+e^{-1}=e^{-1}](https://tex.z-dn.net/?f=%3D%5Blim_%7Bx%5Cto%5Cinfty%7D%20%28-e%5E%7B-%5Cfrac%7B1%7D%7B8%7Dx%7D%29%2Be%5E%7B-1%7D%5D%3D0%2Be%5E%7B-1%7D%3De%5E%7B-1%7D)
I think 30c+3d would be the correct answer.
39. 13x3.....................
Given:
A directed line segment begins at F(-8, -2), ends at H(8, 6), and is divided in the ratio 8 to 2 by G.
To find:
The coordinates of point G.
Solution:
Section formula: If a point divide a line segment with end points
and
in m:n, then the coordinates of that point are

Point G divide the line segment FH in 8:2. Using section formula, we get




Therefore, the coordinates of point G are (4.8, 4.4).
Answer:
Hope this helps!
Please see through the steps below