Equation of a line:

m = gradient: The difference between two y points and two x points.

c = y-intercept: Where the line crosses the y-axis (x=0)
You have:

so you are missing the m and the c.
To calculate m find two y coordinates -you have (12,
<u>7</u>) and (0, <u>
1</u>)- and subtract them. Then divide this by the subtracted values of the x coordinates -you have (<u>
12</u>, 7) and (<u>
0</u>, 1)- This gives:



To calculate the c, you just see where the line crosses the y-axis. Because you have the point (0, 1), you know that when x=0, y=1. Because x=0 is on the y-axis, you can tell that the line passes through y=1. This makes your c = 1:

When you plug these values into the equation you get your answer:
Answer:
same here too much ppl dieing
Step-by-step explanation:
Answer:
If we divide that by 15 years, we get an annual yield of
$3,000 per year.
Step-by-step explanation:
welcome :)
Answer:
x = 12
(getting to the 20 character limit, please ignore this)
Answer:
7.3% of the bearings produced will not be acceptable
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Target value of .500 in. A bearing is acceptable if its diameter is within .004 in. of this target value.
So bearing larger than 0.504 in or smaller than 0.496 in are not acceptable.
Larger than 0.504
1 subtracted by the pvalue of Z when X = 0.504.



has a pvalue of 0.9938
1 - 0.9938= 0.0062
Smaller than 0.496
pvalue of Z when X = -1.5



has a pvalue of 0.0668
0.0668 + 0.0062 = 0.073
7.3% of the bearings produced will not be acceptable