1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
2 years ago
9

What is 5/6 of 78kg?

Mathematics
2 answers:
Tpy6a [65]2 years ago
6 0

Answer:

65kg

Step-by-step explanation:

5/6*78kg=65kg

<em>hope it helps</em>

<em>brainliest please</em>

Dmitriy789 [7]2 years ago
3 0
65 kg i think or 143 pounds
You might be interested in
If i have 12 kg of trail mix and i ate 8,600 g how many liters would i have left?
Temka [501]

Answer:

3.4 kilograms

Step-by-step explanation:

3 0
3 years ago
WILL GIVE BRAINLIST! :)) AND 20 POINTS
abruzzese [7]

Answer:

1. D

2. D

3. H

4. B

5. B

Step-by-step explanation:

7 0
3 years ago
4x-3y=2<br> 3x=5y=16<br> solve using substitution method
vodomira [7]

\left\{\begin{array}{ccc}4x-3y=2&|\text{add 3y to both sides}\\3x+5y=16\end{array}\right\\\left\{\begin{array}{ccc}4x=3y+2&|\text{divide both sides by 4}\\3x+5y=16\end{array}\right\\\left\{\begin{array}{ccc}x=0.75y+0.5&(*)\\3x+5y=16\end{array}\right\\\\\text{substitute}\ (*)\ \text{to the second equation}\\\\3(0.75y+0.5)+5y=16\qquad\text{use distributive property}\\\\(3)(0.75x)+(3)(0.5)+5y=16\\\\2.25y+1.5+5y=16\qquad\text{subtract 1.5 from both sides}\\\\7.25y=14.5\qquad\text{divide both sides by 7.25}

\boxed{y=2}\\\\\text{substitute the value of y to}\ (*):\\\\x=0.75(2)+0.5\\\\x=1.5+0.5\\\\\boxed{x=2}\\\\Answer:\ x=2\ and\ y=2\to(2,\ 2)

7 0
3 years ago
Find the vertex of this parabola:<br> y = -x2 + 6x - 8
skelet666 [1.2K]

Answer:

4x-8

Step-by-step explanation:

y=-x2+6x-8

y=4x-8

4 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Other questions:
  • Round Each Number To The Nearest Ten To Estimate 87.4 - 28.5 !! I Need Help
    15·1 answer
  • Hey help me its due today
    7·1 answer
  • Please help need it
    11·2 answers
  • A rectangular garden is 8 ft wide and 15 ft long. A diagonal path cuts through the garden. How long is the path?
    14·1 answer
  • The daily cost of hiring a plumber, y, to work hours on a repair project can be modeled
    7·1 answer
  • The area of a rectangular pool is 6072 m(squared)
    15·1 answer
  • In triangle ABC, the measure of angle B is 50 degrees. Give possible values for the measures of angles A and C if ABC is a right
    9·1 answer
  • Please answer asap asap JacobEwing this is for you. I can only give 20 points but I'll mark as brainliest
    12·1 answer
  • Someone help me please-
    7·1 answer
  • Need the answer ASAP
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!