Answer:
x = 3, line AB = 17 , and line CD = 17
y = 10, angle A = 70, and angle D = 70
Step-by-step explanation:
well since their the same length you can put them equal to each otheir
5x + 2 = 8x - 7
subtract 5x by both sides to get --> 2 = 3x -7
add 7 to both sides and get --> 9 = 3x
divide 3 by both sides to get x = 3
now plug it back in each equation we started with and get you answers
Same steps for y but different equations
Answer:
Step-by-step explanation:
Hello!
The objective of this experiment is to test if two different foam-expanding agents have the same foam expansion capacity
Sample 1 (aqueous film forming foam)
n₁= 5
X[bar]₁= 4.7
S₁= 0.6
Sample 2 (alcohol-type concentrates )
n₂= 5
X[bar]₂= 6.8
S₂= 0.8
Both variables have a normal distribution and σ₁²= σ₂²= σ²= ?
The statistic to use to make the estimation and the hypothesis test is the t-statistic for independent samples.:
t= ![\frac{(X[bar]_1 - X[bar]_2) - (mu_1 - mu_2)}{Sa*\sqrt{\frac{1}{n_1} + \frac{1}{n_2 } } }](https://tex.z-dn.net/?f=%5Cfrac%7B%28X%5Bbar%5D_1%20-%20X%5Bbar%5D_2%29%20-%20%28mu_1%20-%20mu_2%29%7D%7BSa%2A%5Csqrt%7B%5Cfrac%7B1%7D%7Bn_1%7D%20%2B%20%5Cfrac%7B1%7D%7Bn_2%20%7D%20%7D%20%7D)
a) 95% CI
(X[bar]_1 - X[bar]_2) ±
*
Sa²=
=
= 0.5
Sa= 0.707ç

(4.7-6.9) ± 2.306* 
[-4.78; 0.38]
With a 95% confidence level you expect that the interval [-4.78; 0.38] will contain the population mean of the expansion capacity of both agents.
b.
The hypothesis is:
H₀: μ₁ - μ₂= 0
H₁: μ₁ - μ₂≠ 0
α: 0.05
The interval contains the cero, so the decision is to reject the null hypothesis.
<u>Complete question</u>
a. Find a 95% confidence interval on the difference in mean foam expansion of these two agents.
b. Based on the confidence interval, is there evidence to support the claim that there is no difference in mean foam expansion of these two agents?
Answer:
50
Step-by-step explanation:
To solve this problem you multiply 6 by 100 and then divide the total by 12 as follows: (6 x 100) / 12
Answer: For example, the polynomial which can also be expressed as has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term.
Step-by-step explanation: (If this helps)