Answer:
0.7486 = 74.86% observations would be less than 5.79
Step-by-step explanation:
I suppose there was a small typing mistake, so i am going to use the distribution as N (5.43,0.54)
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The general format of the normal distribution is:
N(mean, standard deviation)
Which means that:

What proportion of observations would be less than 5.79?
This is the pvalue of Z when X = 5.79. So



has a pvalue of 0.7486
0.7486 = 74.86% observations would be less than 5.79
Answer:
14
Step-by-step explanation:
Answer:
(f + g)(x) = 12x² + 16x + 9 ⇒ 3rd answer
Step-by-step explanation:
* Lets explain how to solve the problem
- We can add and subtract two function by adding and subtracting their
like terms
Ex: If f(x) = 2x + 3 and g(x) = 5 - 7x, then
(f + g)(x) = 2x + 3 + 5 - 7x = 8 - 5x
(f - g)(x) = 2x + 3 - (5 - 7x) = 2x + 3 - 5 + 7x = 9x - 2
* Lets solve the problem
∵ f(x) = 12x² + 7x + 2
∵ g(x) = 9x + 7
- To find (f + g)(x) add their like terms
∴ (f + g)(x) = (12x² + 7x + 2) + (9x + 7)
∵ 7x and 9x are like terms
∵ 2 and 7 are like terms
∴ (f + g)(x) = 12x² + (7x + 9x) + (2 + 7)
∴ (f + g)(x) = 12x² + 16x + 9
* (f + g)(x) = 12x² + 16x + 9
Hello Anna,
(a)
1.25 per ticket
? number of rides (x)
43.75 total cost (y)
Admission (z)
(b) Linear Equation - 1.25x + z = y
(c) Well you need to calculate the totaly number of rides that person took and add that to the admission cost.