Answer:
x = 2 cm
y = 2 cm
A(max) = 4 cm²
Step-by-step explanation: See Annex
The right isosceles triangle has two 45° angles and the right angle.
tan 45° = 1 = x / 4 - y or x = 4 - y y = 4 - x
A(r) = x* y
Area of the rectangle as a function of x
A(x) = x * ( 4 - x ) A(x) = 4*x - x²
Tacking derivatives on both sides of the equation:
A´(x) = 4 - 2*x A´(x) = 0 4 - 2*x = 0
2*x = 4
x = 2 cm
And y = 4 - 2 = 2 cm
The rectangle of maximum area result to be a square of side 2 cm
A(max) = 2*2 = 4 cm²
To find out if A(x) has a maximum in the point x = 2
We get the second derivative
A´´(x) = -2 A´´(x) < 0 then A(x) has a maximum at x = 2
Answer:
(4, -18)
Step-by-step explanation:
First Use this formula for the x -axis -b/2a
-8/2(1) is -4
Then plug in -4 to the equation
(-4)^2+8(-4)-2 = -18
Answer:
d. 6
Step-by-step explanation:
Answer:
N:ki n:kn:kNN
Step-by-step explanation:
Answer:
Step-by-step explanation:
this is the same equation, the system has infinitely many solutions