Answer:
<h3>1.<em>t</em><em>a</em><em>s</em><em>k</em><em> </em><em>4</em><em>1</em><em>0</em><em>(</em><em>B)</em></h3>
<h3><em>2</em><em>.</em><em>b</em><em>o</em><em>t</em><em>h</em><em> </em><em>of </em><em>4</em><em>1</em><em>0</em><em>(</em><em>B</em><em>)</em></h3>
<h2><em>MARK </em><em>ME </em><em>AS </em><em>BRAINLY</em></h2>
<h3><em>#</em><em>C</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>On </em><em>Learning</em></h3>
Answer:
- x = 37
- DG = 22
- AG = 44
- AD = 66
Step-by-step explanation:
We presume your "centroid ratio theorem" tells you that AG = 2·DG, so ...
(x+7) = 2(x -15)
x + 7 = 2x - 30 . . . . eliminate parentheses
37 = x . . . . . . . . . . .add 30-x
Then AG = 37+7 = 44
and DG = 37-15 = 22.
Of course, AD = AG +GD = 44 +22 = 66
Answer:
(y + 7i)(y - 7i)
Step-by-step explanation:
It cannot be factored using real numbers, but consider
7i × - 7i
= -49i² and i² = - 1
= 49
The factoring as a difference of squares to obtain
y² + 49 = (y + 7i)(y - 7i)
This problem is better understood with a given figure. Assuming
that the flight is in a perfect northwest direction such that the angle is 45°,
therefore I believe I have the correct figure to simulate the situation (see
attached).
Now we are asked to find for the value of the hypotenuse
(flight speed) given the angle and the side opposite to the angle. In this
case, we use the sin function:
sin θ = opposite side / hypotenuse
sin 45 = 68 miles per hr / flight
flight = 68 miles per hr / sin 45
<span>flight = 96.17 miles per hr</span>