In the equation
![3^x = 3\cdot 2^x](https://tex.z-dn.net/?f=3%5Ex%20%3D%203%5Ccdot%202%5Ex)
divide both sides by
to get
![\dfrac{3^x}{2^x} = 3 \cdot \dfrac{2^x}{2^x} \\\\ \implies \left(\dfrac32\right)^x = 3](https://tex.z-dn.net/?f=%5Cdfrac%7B3%5Ex%7D%7B2%5Ex%7D%20%3D%203%20%5Ccdot%20%5Cdfrac%7B2%5Ex%7D%7B2%5Ex%7D%20%5C%5C%5C%5C%20%5Cimplies%20%5Cleft%28%5Cdfrac32%5Cright%29%5Ex%20%3D%203)
Take the base-3/2 logarithm of both sides:
![\log_{3/2}\left(\dfrac32\right)^x = \log_{3/2}(3) \\\\ \implies x \log_{3/2}\left(\dfrac 32\right) = \log_{3/2}(3) \\\\ \implies \boxed{x = \log_{3/2}(3)}](https://tex.z-dn.net/?f=%5Clog_%7B3%2F2%7D%5Cleft%28%5Cdfrac32%5Cright%29%5Ex%20%3D%20%5Clog_%7B3%2F2%7D%283%29%20%5C%5C%5C%5C%20%5Cimplies%20x%20%5Clog_%7B3%2F2%7D%5Cleft%28%5Cdfrac%2032%5Cright%29%20%3D%20%5Clog_%7B3%2F2%7D%283%29%20%5C%5C%5C%5C%20%5Cimplies%20%5Cboxed%7Bx%20%3D%20%5Clog_%7B3%2F2%7D%283%29%7D)
Alternatively, you can divide both sides by
:
![\dfrac{3^x}{3^x} = \dfrac{3\cdot 2^x}{3^x} \\\\ \implies 1 = 3 \cdot\left(\dfrac23\right)^x \\\\ \implies \left(\dfrac23\right)^x = \dfrac13](https://tex.z-dn.net/?f=%5Cdfrac%7B3%5Ex%7D%7B3%5Ex%7D%20%3D%20%5Cdfrac%7B3%5Ccdot%202%5Ex%7D%7B3%5Ex%7D%20%5C%5C%5C%5C%20%5Cimplies%201%20%3D%203%20%5Ccdot%5Cleft%28%5Cdfrac23%5Cright%29%5Ex%20%5C%5C%5C%5C%20%5Cimplies%20%5Cleft%28%5Cdfrac23%5Cright%29%5Ex%20%3D%20%5Cdfrac13)
Then take the base-2/3 logarith of both sides to get
![\log_{2/3}\left(2/3\right)^x = \log_{2/3}\left(\dfrac13\right) \\\\ \implies x \log_{2/3}\left(\dfrac23\right) = \log_{2/3}\left(\dfrac13\right) \\\\ \implies x = \log_{2/3}\left(\dfrac13\right) \\\\ \implies x = \log_{2/3}\left(3^{-1}\right) \\\\ \implies \boxed{x = -\log_{2/3}(3)}](https://tex.z-dn.net/?f=%5Clog_%7B2%2F3%7D%5Cleft%282%2F3%5Cright%29%5Ex%20%3D%20%5Clog_%7B2%2F3%7D%5Cleft%28%5Cdfrac13%5Cright%29%20%5C%5C%5C%5C%20%5Cimplies%20x%20%5Clog_%7B2%2F3%7D%5Cleft%28%5Cdfrac23%5Cright%29%20%3D%20%5Clog_%7B2%2F3%7D%5Cleft%28%5Cdfrac13%5Cright%29%20%5C%5C%5C%5C%20%5Cimplies%20x%20%3D%20%5Clog_%7B2%2F3%7D%5Cleft%28%5Cdfrac13%5Cright%29%20%5C%5C%5C%5C%20%5Cimplies%20x%20%3D%20%5Clog_%7B2%2F3%7D%5Cleft%283%5E%7B-1%7D%5Cright%29%20%5C%5C%5C%5C%20%5Cimplies%20%5Cboxed%7Bx%20%3D%20-%5Clog_%7B2%2F3%7D%283%29%7D)
(Both answers are equivalent)
the answer would be -1,224 because the parentheses is your multiplication and the it is a negative
Answer:
Mark as brainlist
Step-by-step explanation:
Steps for dividing fractions
Find the reciprocal of the divisor. Reciprocal of 35: 53.
So, 920 ÷ 35 = 920 × 53.
= 9 × 520 × 3 = 4560.
After reducing the fraction, the answer is 34.
Answer:
16.24°
Step-by-step explanation:
Are you trying to find the angle of depression from the camera to the cashier?
Assume that the camera is 2.24 m high and the cashier is 7.69 m away.
1. Angle of elevation from cashier
tanθ = 2.24/7.69 = 0.2913
θ = arctan(0.2913) = 16.24°
2. Angle of depression from camera
∠ of depression = ∠ of elevation = 16.24°