let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{6\frac{1}{2}}\implies \cfrac{6\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{13}{2}}~\hfill \stackrel{mixed}{1\frac{5}{8}\implies \cfrac{1\cdot 8+5}{8}}\implies \stackrel{improper}{\cfrac{13}{8}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B13%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B5%7D%7B8%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B5%7D%7B8%7D%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B13%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{total salad}}{\cfrac{13}{2}}\div \stackrel{\stackrel{\textit{conainer's}}{\textit{capacity}}}{\cfrac{13}{8}}\implies \cfrac{\begin{matrix} 13 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}{\underset{1}{\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}}\cdot \cfrac{\stackrel{4}{\begin{matrix} 8 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}}{\begin{matrix} 13 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}\implies 4](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Btotal%20salad%7D%7D%7B%5Ccfrac%7B13%7D%7B2%7D%7D%5Cdiv%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bconainer%27s%7D%7D%7B%5Ctextit%7Bcapacity%7D%7D%7D%7B%5Ccfrac%7B13%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cbegin%7Bmatrix%7D%2013%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7B%5Cunderset%7B1%7D%7B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B4%7D%7B%5Cbegin%7Bmatrix%7D%208%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7D%7B%5Cbegin%7Bmatrix%7D%2013%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%5Cimplies%204)
Answer:
We conclude that he have 84 possible complete trips to Tech.
Step-by-step explanation:
We know that he live 9 (rectangular) blocks from Tech. The trip is 3 blocks north and 6 blocks west. We calculate number of possible complete trips to Tech. We know that

We calculate

We conclude that he have 84 possible complete trips to Tech.
Answer:
First one:
Linearly, because the table shows that the orchids increased by the same amount each month
Step-by-step explanation:
Let y be the no. of Orchids and x be the no. of months
y = 1.4x + 9.6
Answer:
-0.5
Step-by-step explanation:
2n-3 >= 1-4n+7
2n-10>= 1-4n
2n-11>=4n
-11>=2n
-0.5>= n