<span>12.3
Volume function: v(x) = ((18-x)(x-1)^2)/(4pi)
Since the perimeter of the piece of sheet metal is 36, the height of the tube created will be 36/2 - x = 18-x.
The volume of the tube will be the area of the cross section multiplied by the height. The area of the cross section will be pi r^2 and r will be (x-1)/(2pi). So the volume of the tube is
v(x) = (18-x)pi((x-1)/(2pi))^2
v(x) = (18-x)pi((x-1)^2/(4pi^2))
v(x) = ((18-x)(x-1)^2)/(4pi)
The maximum volume will happen when the value of the first derivative is zero. So calculate the first derivative:
v'(x) = (x-1)(3x - 37) / (4pi)
Convert to quadratic equation.
(3x^2 - 40x + 37)/(4pi) = 0
3/(4pi)x^2 - (10/pi)x + 37/(4pi) = 0
Now calculate the roots using the quadratic formula with a = 3/(4pi), b = -10/pi, and c = 37/(4pi)
The roots occur at x = 1 and x = 12 1/3. There are the points where the slope of the volume equation is zero. The root of 1 happens just as the volume of the tube is 0. So the root of 12 1/3 is the value you want where the volume of the tube is maximized. So the answer to the nearest tenth is 12.3</span>
9514 1404 393
Answer:
f(x) = x³ +3x² -6x -18
Step-by-step explanation:
In order for there to be a root of √6, there must be a factor of (x-√6). In order for there to be rational coefficients, there needs to be another factor of (x+√6) in the minimal polynomial. Then the minimal polynomial with the required roots is ...
f(x) = (x +3)(x -√6)(x +√6) = (x +3)(x² -6)
f(x) = x³ +3x² -6x -18
Answer:
I think it's 9x/7
Step-by-step explanation:
Hope my answer has helped you.
Answer:
at least 290,000
Step-by-step explanation:
Why is this a question
Answer:
Yes
Step-by-step explanation:
This equation is in slope-intercept form,
. If graphed, it would be a line.
Hope this helps!