Archimedes' principle states that a body immersed in a fluid is subjected to an upwards force equal to the weight of the displaced fluid. This is a first condition of equilibrium. We consider that the above force, called force of buoyancy, is located in the centre of the submerged hull that we call centre of buoyancy.
Answer:
22m/s
Explanation:
Mass, m=60 kg
Force constant, k=1300N/m
Restoring force, Fx=6500 N
Average friction force, f=50 N
Length of barrel, l=5m
y=2.5 m
Initial velocity, u=0

Substitute the values

m
Work done due to friction force

We have 
Substitute the values


Initial kinetic energy, Ki=0
Initial gravitational energy,
\
Initial elastic potential energy


Final elastic energy,
Final kinetic energy, 
Final gravitational energy, 
Final gravitational energy, 
Using work-energy theorem

Substitute the values






Since the anode dissolves and goes to the cathode. The object to be electroplated is kept at the cathode.
Please mark me as brainliest.
The velocity of the red ball after the collision is 5.8 m/s
Explanation:
In absence of external forces on the system, we can apply the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision, so we can write:
where:
is the mass of the pool ball
is the initial velocity of the pool ball
is the final velocity of the pool ball
is the mass of the red ball
is the initial velocity of the red ball
is the final velocity of the red ball
Solving the equation for v2, we find the final velocity of the red ball after the collision:
Learn more about collisions:
brainly.com/question/13966693#
brainly.com/question/6439920
#LearnwithBrainly
Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain
