<span>Both objects receive the same impulse.</span>
The answer would be energy, because all wave emitters give off at least one type of energy....
Answer:

Therefore, highest point that the cannon ball reaches is 168.7m
Explanation:
the cannon is fired at an angle 30 o to the horizonatal with a speed of 155 m/s
highest point that the cannon ball reaches?

g = 9.8m/s2

Therefore, highest point that the cannon ball reaches is 168.7m
Answer:
1500 milliradians
Explanation:
Data provided in the question:
1.5 radians
Now,
1 radians consists of 1000 milliradians
1 milli = 1000
thus for the 1.5 radians, we have
1.5 radians = 1.5 multiplied by 1000 milliradians
or
1.5 radians = 1500 milliradians
Hence, after the conversion
1.5 radians equals to the value 1500 milliradians
This type of a problem can be solved by considering energy transformations. Initially, the spring is compressed, thus having stored something called an elastic potential energy. This energy is proportional to the square of the spring displacement d from its normal (neutral position) and the spring constant k:

So, this spring is storing almost 12 Joules of potential energy. This energy is ready to be transformed into the kinetic energy when the masses are released. There are two 0.2kg masses that will be moving away from each other, their total kinetic energy after the release equaling the elastic energy prior to the release (no losses, since there is no friction to be reckoned with).
The kinetic energy of a mass m moving with a velocity v is given by:

And we know that the energies are conserved, so the two kinetic energies will equal the elastic potential one:

From this we can determine the speed of the mass:

The speed will be 7.74m/s in in one direction (+), and same magnitude in the opposite direction (-).