64 is the answer, as all you need to figure out is the length, and width, and multiply them together. Or, just count each unit inside the shape.
Formula for curvature for a well behaved curve y=f(x) is
K(x)= ![\frac{|{y}''|}{[1+{y}'^2]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%7C%7By%7D%27%27%7C%7D%7B%5B1%2B%7By%7D%27%5E2%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
The given curve is y=7

k(x)=![\frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
![{k(x)}'=\frac{7(e^x)(1+49e^{2x})(49e^{2x}-\frac{1}{2})}{[1+49e^{2x}]^{3}}](https://tex.z-dn.net/?f=%7Bk%28x%29%7D%27%3D%5Cfrac%7B7%28e%5Ex%29%281%2B49e%5E%7B2x%7D%29%2849e%5E%7B2x%7D-%5Cfrac%7B1%7D%7B2%7D%29%7D%7B%5B1%2B49e%5E%7B2x%7D%5D%5E%7B3%7D%7D)
For Maxima or Minima


→
[not possible ∵there exists no value of x satisfying these equation]
→
Solving this we get
x= 
As you will evaluate
<0 at x=
So this is the point of Maxima. we get y=7×1/√98=1/√2
(x,y)=[
,1/√2]
k(x)=![\lim_{x\to\infty } \frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cinfty%20%7D%20%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
k(x)=
k(x)=0
Answer:
x= 10
Step-by-step explanation:
1/5 x -2/3 = 4/3
Add 2/3 to each side
1/5x -2/3 +2/3 = 4/3 +2/3
1/5x = 6/3
1/5x = 2
Multiply each side by 5
1/5x * 5 = 2*5
x = 10
The product in simplest form is (x - 4)
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

We have to find the product in simplest form
In the given expression,
2x + 8 = 2(x+ 4)
We know that,

Therefore,

Substitute these in given expression

Cancel the common factors,

Thus the product in simplest form is (x - 4)