Neither p or z ISNT A NUMBER SO DO ONE WITH A NUMBER THAT QUESTIPON IS WRONG
EEEEEEE
Slope (y2-y1)/(x2-x1)
(-3-9)/(15-19) = -12/-4 = 3
The slope is 3
9514 1404 393
Answer:
a) see the attached spreadsheet (table)
b) Calculate, for a 10-year horizon; Computate for a longer horizon.
c) Year 13; no
Step-by-step explanation:
a) The attached table shows net income projections for the two companies. Calculate's increases by 0.5 million each year; Computate's increases by 15% each year. The result is rounded to the nearest dollar.
__
b) After year 4, Computate's net income is increasing by more than 0.5 million per year, so its growth is faster and getting faster yet. However, in the first 10 years, Calculate's net income remains higher than that of Computate. If we presume that some percentage of net income is returned to investors, then Calculate may provide a better return on investment.
The scenario given here is only interested in the first 10 years. However, beyond that time frame (see part C), we find that Computate's income growth far exceeds that of Calculate.
__
c) Extending the table through year 13, we see that Computate's net income exceeds Calculate's in that year. It continues to remain higher as long as the model remains valid.
Short AnswerThere are two numbers
x1 = -0.25 + 0.9682i <<<<
answer 1x2 = - 0.25 - 0.9582i <<<<
answer 2 I take it there are two such numbers.
Let one number = x
Let one number = y
x + y = -0.5
y = - 0.5 - x (1)
xy = 1 (2)
Put equation 1 into equation 2
xy = 1
x(-0.5 - x) = 1
-0.5x - x^2 = 1 Subtract 1 from both sides.
-0.5x - x^2 - 1 = 0 Order these by powers
-x^2 - 0.5x -1 = 0 Multiply though by - 1
x^2 + 0.5x + 1 = 0 Use the quadratic formula to solve this.

a = 1
b = 0.5
c = 1

x = [-0.5 +/- sqrt(0.25 - 4)] / 2
x = [-0.5 +/- sqrt(-3.75)] / 2
x = [-0.25 +/- 0.9682i
x1 = -0.25 + 0.9682 i
x2 = -0.25 - 0.9682 i
These two are conjugates. They will add as x1 + x2 = -0.25 - 0.25 = - 0.50.
The complex parts cancel out. Getting them to multiply to 1 will be a little more difficult. I'll do that under the check.
Check(-0.25 - 0.9682i)(-0.25 + 0.9682i)
Use FOIL
F:-0.25 * -0.25 = 0.0625
O: -0.25*0.9682i
I: +0.25*0.9682i
L: -0.9682i*0.9682i = - 0.9375 i^2 = 0.9375
NoticeThe two middle terms (labled "O" and "I" ) cancel out. They are of opposite signs.
The final result is 0.9375 and 0.0625 add up to 1
Sorry i dont know im not that far in school that's like high school stuff sorry